Ukrainian Journal of Ecology, 2018, 8(1), 165-173 doi: 10.15421/2018_202

ORIGINAL ARTICLE

Calculation of the magnetic resonance isotropy tensors of the nucleus of POPC phospholipid bilayers in a cell membrane

A. Elsagh¹, K. Zare¹*, M. Monajjemi²

¹Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran E-mail: akbarelsagh@gmail.com, K-zare@sbu.ac.ir* ²Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran E-mail: <u>maj.monajjemi@iauctb.ac.ir</u> *Corresponding Author E-mail: <u>K-zare@sbu.ac.ir</u> Submitted: 21.12.2017. Accepted: 29.01.2018

Importance of membrane phospholipids and their various applications in various sciences and industries including chemistry and biochemistry, chemical sensors and treatment of diseases and effective delivery of drugs and materials through cellular membrane is clear. Investigation of the NMR parameters including isotropy of the isotropic value (σ_{iso}), anisotropy chemical shift (σ_{aniso}), reduced anisotropy (δ), asymmetric parameter (η) of the anisotropy parameter ($\Delta\sigma$) and skew parameter (K) enables the recognition of target active centers. Phospholipid structure was optimized using calculation of molecular mechanics and quantum mechanics. Then, using ab initio calculations, factors of NMR chemical isotropy tensor were calculated for membrane phospholipids. According to results, it was found out that carbon no. 2 bonded to nitrogen and after that, no. 32 carbon atom bonded to the oxygen have most contribution to the dynamics movements of phospholipid in membrane. It can be concluded that high electronegativity of the nitrogen and oxygen plays an important role in sensitivity of the phospholipid carbons. Increased number of electronegative agents in the phospholipid results in better control of the dynamic role of the membrane. Evaluation of the NMR parameters of phospholipid structure led to recognition of the active centers and owing to the mutual effect of these centers, transfer and exchange in these active sites and if agents similar to the human's genetic structure are taken into account for transfer and exchange, they can be very useful and rapid transmitters for delivery of drugs to the target cells.

Key words: Theoretical chemistry; phospholipids; nucleus magnetic resonance; chemical isotropy tensors

Introduction

One of the biological processes of organisms and enzymatic reactions is the reaction of membrane phospholipids (Young, 2001). Computational chemistry enables us to study the chemical reactions and complexes using computerized calculations rather than laboratory. In reality, computational chemistry can simulate molecules and their reactions and yields results faster (Jensen, 2001; Anishkin, *et al.*, 2006). In summary, quantum chemistry is the application of quantum mechanics in chemical issues and drawing upon the quantum mechanics, it intends to answer chemical problems (Elsagh *et al.*, 2015). Quantum chemistry includes ab initio studies, semi-empirical studies, molecular mechanics studies, and simulation studies (Amara and Field, 2003). Molecular interactions calculations are done using molecular mechanics, quantum mechanics, or a combination of both (Senn and Thiel, 2009; Elsagh *et al.*, 2016; Gao and Truhlar, 2002; Klahn, *et al.*, 2005; Friesner and Guallar, 2005).

Cellular membrane is a structure having 7-10 nm thickness which determines the borders of the cells and controls the materials exchange between cell and surrounding environment as a selection barrier. Membrane is composed of a continuous lipid layer in which protein particles are dispersed. Phospholipids are molecules composed of a head-like part and a tail connected to it. Most of the membrane molecules are phospholipid molecules. Each phospholipid molecule has two parts: a hydrophilic head and a lipophilic tail.

Phospholipid is a type of lipid composed of a glycerol molecule and a phosphate molecule. This material is available in cellular membrane of all living organisms. Cellular shell or plasma membrane refers to one- or two-layer phospholipid shell around the cells. Cellular shell is also a border surrounding intercellular organelles. In fact, cellular shell is a wall, which protects the cell (Looish *et al.*, 2007). Phospholipids are the most important polar lipids which constitute the main part of the cellular shell in all organisms. Phospholipids form a two-layer membrane to act as a protective and selective barrier and adjust the survival of the cell. Two phospholipid layers are arranged so that their polar heads are toward the outside of the layers and nonpolar heads are toward each other (Elsagh *et al.*, 2015).

Fig. 1. Phospholipids of two-layer membrane (from Elsagh et al., 2016)

Nuclear resonance spectrometry (NMR) engages with the intranuclear interactions and magnetic fields and is a strong technique for evaluation of the structural and dynamic properties of the molecules in different physical conditions (Alam, 1970; Hou *et al.*, 2013). Structures used in calculations quantum must be well optimized. Following instructions are used for calculation of the magnetic resonance (Elsagh *et al.*, 2014).

Table 1. Instructions used for NMR calculations

Command	Method	Basic sets
		sto-3g
		3-21g
	# HF	6-31g
NMR		6-31g*
		6-31g
	# B ₃ LYP	6-31g*
	# M062X	6-31g

In this study, using quantum mechanics computations, the NMR parameters of phospholipid structures are computed which enables the recognition of Phospholipid active centers having high electronegativity. These centers can impart significant effects on the transfer and exchange of targeted smart drugs. Hence, the mutual effects of the active centers and drug agents can be investigated. This can open up very useful and interesting areas of research in different sciences and industries, such as medicinal chemistry and pharmacology.

Method

The Hartree-Fock method is a general method used for the isotropy computations (Alam, 1998; Gendron and Autschbach, 2016). This approximation which represents the electron wave function as a single-electron form, introduces the effect of other electrons as an effect of static field (Brown, 1996). Chemical displacement reaction is expressed usually in the form of H_{cs} term. H_{cs} = y h l.o.B₀ (1)

Where, γ is the gyromagnetic ratio, Γ is the operator of spin angular momentum vector, B_0 is the magnetic field and h is the Planck coefficient divided by 2π . Since the chemical displacement occurs as a result of environmental electrons, it can provide unique information about chemical environment of the nucleus (Alam and Jenkins, 2012). When a sample is outside of the magnetic field, electronic cloud around the nuclei tend to become aligned in rotation so that they can establish a field in the opposite direction of the external field. Such rotation is called diamagnetic rotation. Overall field in atom nucleus is expressed as follows:

B effective=B external-B induced	(2)
Since the induced field is directly proportional to the externa	l field, it can be said that:
$B_{induced} = \sigma B_{external}$	(3)
Where, σ is proportionality factor. Then, we have:	
$B_{effective} = B_z (1 - \sigma)$	(4)

The electromagnetic diamagnetic rotation has the effect of shielding an external field on a nucleus in which the amount of coverage for a particular atom is constant, but changes with the electron density around the atom in a molecule. So we can write the above equation as follows:

$$B_i = B_Z (1 - \sigma_i)$$

(5)

Where, B_i is the field received by nucleus i having isotropy constant σ_i . For example, since oxygen is more receptive of the electron compared to carbon and has more electronegativity, density of the electron around hydrogen in C-H bonds is considerably higher than that of H-O bonds. Therefore, it is expected that $\sigma_{CH} < \sigma_{OH}$ and we have: $B_{CH} = B_Z(1 - \sigma_{CH}) < B_{OH} = B_Z(1 - \sigma_{OH})$ (6)

Hence, it can be said that chemical isotropy implies to those phenomena which are dependent upon secondary magnetic field resulted from electrons' movement around the nucleus and are under an external magnetic field. Energy of a magnetic moment under magnetic field B is:

$$E = -\mu (1 - \sigma B)$$

(7)

Where, o is the isotropy constant and the differential displacement as a result of electrons movement. It is given by a 3×3 matrix. Relationship between magnetic field having induced magnetic field and external magnetic field will be a 3×3 isotropy tensor as follows.

[^B 1]		σ_{11}	σ_{12}	σ_{13}	[^B 1]
B ₂	=	σ_{21}	σ_{22}	σ_{23}	B ₂
$\begin{bmatrix} B_1 \\ B_2 \\ B_3 \end{bmatrix}_{ind}$		σ_{31}	σ_{32}	σ_{33}	[B3] 0

In the principal axis system (PAS), symmetric part of the isotropy tensor is defined as follows and σ is defined using diagonal elements.

	σ _{xx}	σ_{xy}	σ_{xz}		σ_{11}	0	0]
σ=	σ_{yx}	$\sigma_{yy} \ \sigma_{zy}$	σ_{yz}	$\longrightarrow \sigma_{PAS} =$	0	σ_{22}	0
	σ_{zx}	σ_{zy}	σ_{zz}		LO	0	σ_{33}

Three main elements, σ_{11} , σ_{22} and σ_{33} represents the chemical isotropy interactions in three dimensions.

Chemical isotropy tensor implies normally to the anisotropy chemical displacement tensor. Measuring the diagonal components in PAS (Principle Axis System) enables the complete description of CSA (chemical shift anisotropy) (Hazime and Isao, 2010).

The Isotropic value (σ_{iso}) is obtained as follows.

$\sigma_{iso} = (\sigma_{11} + \sigma_{22} + \sigma_{33}) / 3$	(8)
Furthermore, skew parameter (K) is given as follows.	
$K = 3 * (\sigma_{iso} - \sigma_{22}) / (\sigma_{33} - \sigma_{11})$	(9)
	· · · · ·

Using above formula, anisotropy chemical shift (σ_{aniso}), reduced anisotropy (δ), asymmetric parameter (η) and anisotropy parameter ($\Delta\sigma$) of the isotropy tensor will be calculated.

a) If $[\sigma_{11} - \sigma_{iso}] \ge [\sigma_{33} - \sigma_{iso}]$, we have:

$\delta = \sigma_{11} - \sigma_{iso}$	(10)
η = $(σ_{22} - σ_{33}) / δ$	(11)
$\Delta \sigma = \sigma_{11} - (\sigma_{22} + \sigma_{33})/2$	(12)

b) If $[\sigma_{11} - \sigma_{iso}] \le [\sigma_{33} - \sigma_{iso}]$, we have:

$\delta = \sigma_{33} - \sigma_{iso}$	(13)
η = $(σ_{22} - σ_{11})/δ$	(14)
$\Delta \sigma = \sigma_{33} - (\sigma_{22} + \sigma_{11})/2$	(15)

K is the skew parameter and varies from -1 to 1. η is the asymmetric parameter and varies from 0 to 1 (Hazime and Isao, 2010; ShakibayiFar *et al.*, 2015; Pandey *et al.*, 2016).

All of the measurements of magnetic isotropy were performed using GIAO method. Hence, structure of phospholipid was optimized using 6-31G series in HF level and Gaussian input was prepared after sketching by Chem3D. In this work, effect of inter intermolecular interactions on chemical isotropy of the phospholipid nuclei was evaluated and calculations are presented below. This study has been performed based on recent works by famous researchers (Widdifield and Schurko, 2009; Alam *et al.*, 2016).

Results and Discussion

Fig. 2 represents the single phospholipid molecule in membrane with respect to spatial coordinates through quantum mechanical-molecular mechanical (QM-MM) and using Monte Carlo simulation method. For calculations, we need output of the molecular optimization and upon typing corresponding command, software starts calculations.

Fig. 2. Simulated and optimized phospholipid molecule (from Elsagh et al., 2016)

In resulting output file, SCRF (Self-consistent reaction field) and GIAO (gauge including atomic orbital) Magnetic Shielding Tensor data are important. Values and numbers of isotropy, anisotropy, xx, yy and zz are noted and using calculations, NMR factors including isotropic value (σ_{iso}), anisotropy chemical shift (σ_{aniso}), reduced anisotropy (δ), asymmetric parameter (η), parameter anisotropy ($\Delta\sigma$) and skew parameter (K) are calculated for membrane phospholipids.

In fig. 3, arrangement of phospholipid molecules is presented. Atom 4 is nitrogen in blue, atom 8 is phosphor in orange, atoms 7, 9, 10, 11, 14, 16, 33 and 35 are oxygen in red and all other gray atoms are carbon.

Fig. 3. Arrangement of atoms in phospholipid, NMR

Below we presented the results of NMR calculations for phospholipid molecules over magnetic resonance isotropy tensor of nuclei involving in the aforesaid structure (Tables 2-3, Figs 4-9).

By comparison of the σ_{iso} , σ_{aniso} , δ , η , $\Delta\sigma$ and K reveals that highest value of reduced anisotropy (δ) is that of 2C atom which can be attributed to the C-N bond and high electronegativity of nitrogen leading to the intensified field. Regarding anisotropy parameter ($\Delta\sigma$), same is true. Least isotropic value (σ_{iso}), isotropy is for 32C atom while maximum value is for 2C bonded to nitrogen. Importantly, this trend can be observed in anisotropy of anisotropy chemical shift (σ_{aniso}). Minimum asymmetric parameter (η), of the isotropy tensor is for 32C as well. Usually, carbons have highest and oxygens have lowest values. Moreover, maximum value of skew parameter (K) refers to no. 2 carbon and minimum value is for no. 32 carbon atom.

Atoms	σ ₁₁	σ 22	σ 33	σ_{iso}	σ _{aniso}
1 C	-1882.7644	-335.7212	2879.5645	220.3596333	3988.807
2 C	-427.8979	294.1625	10382.7655	3416.343367	10449.63
3 C	-409.7171	1517.5564	4319.8307	1809.223333	3765.911
4 N	-576.9714	438.9246	881.732	247.8950667	950.7554
5 C	-2020.4701	-142.8077	658.0186	-501.7530667	1739.658
6 C	-1414.6743	22.7533	192.4987	-399.8074333	888.4591
7 0	-351.89	79.4902	319.0267	15.5423	455.2266
8 P	306.4769	377.4227	613.719	432.5395333	271.7691
90	163.7777	225.9251	254.0657	214.5895	59.2143
10 O	158.048	223.2238	261.7767	214.3495	71.1408
11 0	-766.9731	-109.1587	210.2496	-221.9607333	648.3155
12 C	-562.0234	-44.2992	-8.1094	-204.8106667	295.0518
13 C	-399.6897	-28.7373	124.8405	-101.1955	339.054
14 O	-218.5579	80.5799	244.7619	35.59463333	313.7509
14 C	-70.345	75.7058	115.7109	40.35723333	113.0305
16 O	-637.5526	-197.0989	270.664	-187.9958333	687.9897
18 O 17 C	-037.5526 -1114.3382	-197.0989 -130.8726	129.2197	-371.9970333	751.8251
17 C	-340.5527	-108.5392	833.781	128.2297	1058.327
18 C 19 C	-635.4755	-159.0393	-52.6479	-282.3875667	344.6096
20 C	-281.0157		507.9354	40.40193333	701.3002
20 C 21 C	-281.0157 -381.303	-105.7139 -164.7386	-118.7603	-221.6006333	154.2605
21 C 22 C				-109.5840667	123.9691
22 C 23 C	-207.4236	-94.3906	-26.9380	-119.7032333	265.4205
23 C 24 C	-307.6108	-108.7427	57.2438		
24 C 25 C	-505.4349	-273.1289	131.9279	-215.5453	521.2098
	-516.9936	-12.7449	551.6906	7.317366667	816.5598
26 C	-1392.8101	15.3257	1225.4353	-50.68303333	1914.178
27 C	-1559.281	-262.684	1079.1418	-247.6077333	1990.124
28 C	-1441.7666	-77.924	513.4920	-335.3995333	1273.337
29 C	-686.4697	-305.0012	856.1331	-45.1126	1351.869
30 C	-1324.5057	-217.2408	-6.7068	-516.1511	764.1664
31 C	-1951.6369	-460.7551	-285.7949	-899.3956333	920.4011
32 C	-2999.1727	-20.5477	111.9816	-969.2462667	1621.842
33 O	-1291.7999	-26.1616	178.6126	-379.7829667	837.5933
34 C	-101.4155	88.7277	102.5315	29.9479	108.8754
35 O	-900.2234	-207.9584	302.7163	-268.4885	856.8072
36 C	-1570.8802	-95.4996	153.5392	-504.2802	986.7291
37 C	-701.7934	-203.1773	1692.1678	262.3990333	2144.653
38 C	-428.016	-205.9908	88.3373	-181.8898333	405.3407
39 C	-895.4739	-227.7463	231.9034	-297.1056	793.5135
40 C	-363.6715	-269.575	391.721	-80.5085	708.3442
41 C	-1366.1111	-254.9263	53.1696	-522.6226	863.6883
42 C	-409.9734	-164.0482	1425.0058	283.6614	1712.017
43 C	-1292.1202	-260.3443	8.6987	-514.5886	784.9309
44 C	-376.5119	-63.7841	1376.1947	311.9662333	1596.343
45 C	-1095.4117	-284.8178	-144.524	-508.2511667	545.5908
46 C	-1344.2799	-114.3012	178.2566	-426.7748333	907.5471
47 C	-413.9978	357.4879	2538.7394	827.4098333	2566.994
48 C	-1826.2077	-410.5146	112.4363	-708.0953333	1230.797
49 C	-919.7707	-300.4216	805.4422	-138.2500333	1415.538
50 C	-2384.2914	-437.3046	87.6772	-911.3062667	1498.475

Fig. 4. Q_{iso} versus atom number for phospholipid

Fig. 5. Q_{aniso} versus atom number for phospholipid

Fig. 6. δ versus atom number for phospholipid

Fig. 7. η versus atom number for phospholipid

Fig. 8. Δσ versus atom number for phospholipid

Table 3. Calculation of δ , η , $\Delta \sigma$ and K for atom number in phospholipid

			· .	
Atoms	δ	η	Δσ	К
1 C	2659.204867	0.581769	3988.8073	0.350299724
2 C	6966.422133	0.103649	10449.6332	0.866417005
3 C	2510.607367	0.767652	3765.91105	0.185007285
4 N	633.8369333	0.536823	950.7554	-0.392875344
5 C	1159.771667	0.527304	1739.6575	-0.402031228
6 C	592.3061333	0.167259	888.4592	-0.788765242
7 O	303.4844	0.65192	455.2266	-0.285942651
8 P	181.1794667	0.391577	271.7692	0.538176572
9 O	39.4762	0.55382	59.2143	-0.37664806
10 O	47.4272	0.684758	71.1408	-0.256658957
11 O	432.2103333	0.586057	648.3155	-0.346293736
12 C	196.7012667	0.101312	295.0519	-0.869330618
13 C	226.036	0.514508	339.054	-0.414417702
14 O	209.1672667	0.645998	313.7509	-0.291280019
15 C	75.35366667	0.361376	113.0305	-0.569966876
16 O	458.6598333	0.960306	687.98975	0.030069039
17 C	501.2167333	0.350368	751.8251	-0.581696518
18 C	705.5513	0.32884	1058.32695	0.604859334
19 C	229.7396667	0.301317	344.6095	-0.634912966
20 C	467.5334667	0.37495	701.3002	0.555607946
21 C	102.8403333	0.2879	154.2605	-0.649746117
22 C	82.64606667	0.689421	123.9691	-0.252543139
23 C	176.9470333	0.883341	265.42055	-0.090122476
24 C	347.4732	0.668558	521.2098	0.271039979
25 C	544.3732333	0.926292	816.55985	0.056318602
26 C	1276.118333	0.901636	1914.1775	-0.07563317
27 C	1326.749533	0.977273	1990.1243	0.017142362
28 C	848.8915333	0.534557	1273.3373	-0.395050864
29 C	901.2457	0.423268	1351.86855	0.505422264
30 C	509.4443	0.260448	764.16645	-0.680476285
31 C	613.6007333	0.166274	920.4011	-0.789943824
32 C	1081.227867	0.065288	1621.8418	-0.914803776
33 O	558.3955667	0.224529	837.59335	-0.721473804
34 C	72.5836	0.105081	108.8754	-0.864633459
35 O	571.2048	0.808369	856.8072	-0.150955447
36 C	657.8194	0.233488	986.7291	-0.711162145
37 C	1429.768767	0.348739	2144.65315	0.583438445
37 C 38 C	270.2271333	0.821624	405.3407	0.140026025
39 C	529.009	0.768172	793.5135	-0.184568112
40 C	472.2295	0.19926	708.34425	0.750867264
40 C 41 C	575.7922	0.365264	863.6883	-0.56584219
41 C 42 C	1141.3444			0.731958597
42 C 43 C	523.2873	0.21547 0.346022	1712.0166 784.93095	-0.586348261
43 C 44 C				
	1064.228467	0.293854	1596.3427	0.643148716
45 C	363.7271667	0.238936	545.59075	-0.70492036
46 C	605.0314333	0.318862	907.54715	-0.615696832
47 C	1711.329567	0.450811	2566.99435	0.477443709
48 C	820.5316333	0.467709	1230.79745	-0.460498266
49 C	943.6922333	0.656304	1415.53835	0.282002702
50 C	998.9834667	0.356407	1498.4752	-0.575252048

Conclusion

Based on the results of NMR calculations for phospholipid, we find out that no. 2 carbon connected to the nitrogen has the most contribution to the dynamic movements of phospholipid in membrane and after that, no. 32 carbon atom which is bonded to the oxygen. Therefore, it can be inferred that high electronegativity of nitrogen and oxygen play an important role in sensitivity of carbon atoms of phospholipid. Therefore, more electronegative agents in phospholipid lead to better control of the membrane dynamic role. Investigation of the NMR parameters in phospholipid structure results in finding charge active

centers and owing to the mutual effect of these centers with pharmaceutical agents, issue of exchange in these active sites will be addressed. If agents with a structure similar to that of human genetic are taken into account, they can act as useful and rapid exchangers for delivery of drugs for the target cells so that at last, they can be removed from body with no side effects. Therefore, mutual effect of these centers and pharmaceutical agents can be evaluated. It can be a new and attractive research topic for all branches of chemistry including pharmaceutical chemistry and organic chemistry.

References

Alam, T.M., Liao, Z., Nyman, M., Yates, J. (2016). Insight into Hydrogen Bonding of Uranyl Hydroxide Layers and Capsules by Use of ¹H Magic-Angle Spinning NMR Spectroscopy. The Journal of Physical Chemistry C, 120(19), 0675–10685.

Alam, T.M., Jenkins, J.E. (2012). HR-MAS NMR Spectroscopy in Material Science. INTECH.

Alam, T.M. (1998). Ab Initio Calculation of Nuclear Magnetic Resonance Chemical Shift Anisotropy Tensors 1. Influence of Basis Set on the Calculation of 31P Chemical Shifts. United States. doi: 10.2172/833

Alam, T.M. (1970). Calculation of Nuclear Magnetic Resonance Chemical Shift Anisotropy Tensors. Cite Seer.

Amara, P., Field, M.J. (2003). Evaluation of an ab initio quantum mechanical/molecular mechanical hybrid-potential link-atom method. Theoretical Chemistry Accounts, 109, 43-52.

Anishkin, A., Sukharev, S., Colombini, M. (2006). Searching for the molecular arrangement of trans membrane ceramide channels. Biophysical Journal, 90(7), 2414-2426.

Brown, J.M.F. (1996). Membrane structure and dynamics studied with NMR spectroscopy, in Biological membranes: A molecular perspective from computation and experiment, Ed. By Merz, K.M., Roux, B. (Birkhauser, Boston).

Elsagh, A., Zare, K., Monajjemi, M. (2016). An electrochemical study of POPC phospholipid bilayers in a cell membrane. Oriental Journal of Chemistry, 32(5), 2585-2598.

Elsagh, A., Jalilian, H.R., Kianpour, E., Gazi Mokri, H.S., Rajabzadeh, M., Moosavi, M.S., Ghaemi Amiri, F., Monajjemi, M. (2015a). The electrical properties and band structure study of (7,0) @ (14,0) Double wall zinc oxide nanotubes (DWZnONTs). Journal of computational and theoretical nanoscience, 12, 4211-4218.

Elsagh, A., Jalilian, H.R., Ilkhani, A.R. (2015b). The Interaction of Single Walled Carbon Nanotube (SWCNT) with Phospholipids Membrane: in Point View of Solvent Effect. Oriental Journal of Chemistry, 31(1), 223-229.

Elsagh, A., Zare, K. (2014). NBO, NQR, and NMR Investigation of Calix-Aren Family in Point View of Nano-drug Delivery: A Monte Carlo and QM/MM Study. 3rd International Conference on Computation for Science and Technology. Bali, Indonesia. 23-25 September.

Friesner, R., Guallar, V. (2005). Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis. Annual Review of Physical Chemistry, 56, 389-427.

Gao, J., Truhlar, D. (2002). Quantum mechanical methods for enzyme kinetics. Annual Review of Physical Chemistry, 53, 467-505.

Gendron, F., Autschbach, J. (2016). Ligand NMR Chemical Shift Calculations for Paramagnetic Metal Complexes: 5f 1 vs 5f 2Actinides. Journal of Chemical Theory and Computation, 12(11), 5309-5321.

Hazime, S., Isao, A., Ayyalusamy, R. (2010). Chemical Shift Tensor-the Heart of NMR: Insights into Biological Aspects of Proteins. Progress in Nuclear Magnetic Resonance Spectroscopy, 57(2), 181-228.

Hou, G.J., Paramasivam, S., Yan, S., Polenova, T., Vega, A.J. (2013). Multidimensional Magic Angle Spinning NMR Spectroscopy for Site-Resolved Measurement of Proton Chemical Shift Anisotropy in Biological Solids. Journal of the American Chemical Society, 135, 1358– 1368.

Jensen, F. (2001). Introduction to computational chemistry. Wiley, New York, USA.

Klahn, M., Braun-Sand, S., Rosta, E., Warshel, A. (2005). On possible pitfalls in ab initio quantum mechanics/molecular mechanics minimi-zation approaches for studies of enzymatic reactions. The Journal of Physical Chemistry B, 109, 15645-15650.

Looish, H., Berk, A., Kaiser, C.A., Krieger, M., Scott, M.P., Bretscher, A., Ploegh, H. (2007). Molecular Cell Biology. W.H. Freeman, New York, USA.

Pandey, M.K., Yarava, J.R., Zhang, R., Ramamoorthy, A., Nishiyama. Y. (2016). Proton-detected 3D¹⁵N/¹H/¹H isotropic/anisotropic/isotropic chemical shift correlation solid-state NMR at 70 kHz MAS. Solid State Nuclear Magnetic Resonance. 76-77, 1–6.

Senn, H.M., Thiel, W. (2009). QM/MM methods for biomolecular systems. Angewandte Chemie International Edition, 48, 1198-1229. ShakibayiFar, J., Ziglari, A., Sayadian, M., Shahriari, S., Khalilimofrad, M.S., Malakian, F., Elsagh, A., Mollaamin, F. (2015). Drug Delivery and NMR Tensors Studies of Methamphetamine and Carbon-Nanotube Binding. Journal of computational and theoretical nanoscience, 12(11), 4158-4165.

Widdifield, C.M., Schurko, R.W. (2009). Understanding Chemical Shielding Tensors Using Group Theory, MO Analysis, and Modern Density-Functional Theory. Concepts in Magnetic Resonance Part A: Bridging Education and Research, 34(2), 91–123.

Young, D.C. (2001). Solvation Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems. Wiley, New York, USA.

Citation:

Elsagh, A., Zare, K., Monajjemi, M. (2018). Calculation of the magnetic resonance isotropy tensors of the nucleus of POPC phospholipid bilayers in a cell membrane. *Ukrainian Journal of Ecology, 8*(1), 165–173.

(cc) EY This work is licensed under a Creative Commons Attribution 4.0. License