Ukrainian Journal of Ecology, 2021, 11(7), 77-86, doi: 10.15421/2021_244

ORIGINAL ARTICLE

Harmfulness of pea pod borer (*Etiella zinckenella* Tr. 1832) in soybeans in the eastern Forest-Steppe of Ukraine

N.V. Lutytska¹, S. Stankevych¹, O. Romanov¹, V.G. Mikheev¹, H⁰.O. Balan²

¹V.V. Dokuchaev Kharkiv National Agrarian University, v. Dokuchaevske, Kharkiv region, 62483, Ukraine ²Odessa State Agrarian University, 13 Panteleimonivska Street, Odessa, 65012, Ukraine *Corresponding author email: sergejstankevich1986@gmail.com

Received: 02.08.2021. Accepted: 16.09.2021.

Soybean is the main leguminous crop in the world. Its grain is balanced in protein and digestible amino acids. Among the dangerous soybean pests, scientists distinguish pea pod borer (leguminous) (Etiella zinckenella Tr.). Our research on soybean crops was carried out during 2018-2020 in the state enterprise 'Experimental Farm' Elitne', Kharkiv district, Kharkiv region. The plants were examined for the presence of pea pod borer caterpillars and damaged beans. All the results obtained were processed and inserted into tables. The number of caterpillars in soybean plants in 2018 ranged from 2 to 29 specimens/100 plants, in 2019 from 2 to 22 specimens/100 plants, in 2020 from 2 to 21 specimens/100 plants. When soybean plants were examined, the damage was also found to beans and seeds. In 2018, the percentage of damage ranged from 0.3% to 3.7%, in 2019 from 0.2% to 0.9% and in 2020 from 0.6% to 1.8%. The percentage of damaged seeds was: in 2018-from 0.2% to 3.4%, in 2019-from 0.1% to 0.8% and in 2020from 0.6% to 1.8%. In our study, we conducted experiments on damaged seeds by pea pod borer under laboratory conditions of V. Ya. Yuriev Institute of Plant Cultivation of NAAS. We have done a seed analysis for fat and protein content. On average, for 2018-2020, the following data were obtained: undamaged seeds contained 37.05% protein, 21.10% fat, and damaged seeds-38.61% and 19.75%, respectively. During 2018-2020, soybean crops were monitored for pea pod borer caterpillars, and the most colonized varieties were sprayed with insecticides. In 2018, Nurel D showed the greatest technical efficiency on day 3, 55% emulsion concentrate (1.0 l/ha)-28%, on day 7-Antygusin, 50% suspension concentrate (0.15 l/ha)-59%, on day 14-Preparation Koragen, 20% suspension concentrate. (0.2 I/ha)-82%; in 2019, the best technical efficiency on day 3 was shown by Antygusin preparation, 50% suspension concentrate (0.15 l/ha) -33%, on day 7-also preparation Antygusin, 50% suspension concentrate (0.15 l/ha) -53%, on day 14 - Koragen preparation, 20% suspension concentrate (0.2 I/ha)-73%; in 2020, the best technical efficiency on day 3 was shown by Chlorpyrivit-agro, 55% emulsion concentrate (1.0 l/ha)-29%, on day 7-Antygusin, 50% suspension concentrate (0.15 I/ha)-52%, on 14 day preparation Koragen, 20% suspension concentrate (0.2 I/ha)-81%.

Keywords: Legumes, soybeans, pests, pea pod borer, harmfulness, damage.

Introduction

Soybean is one of the most important crops in world agriculture and is used successfully to solve the problem of increasing vegetable protein and oil production. Pea pod borer (*Etiella zinckenella* Tr.) is a pest that can destroy soybean yield up to 90%. The harmfulness of pea pod borer reduces the grain yield (the seeds of damaged beans are partially or entirely eaten inside), spreading bacterial and fungal diseases on the damaged grain.

The pea pod borer (*Etiella zinckenella* Tr.) is a dangerous pest in soybean crops. Active colonization is facilitated by the close placement of crops from Siberian pea shrub and locust tree plantations. The natural habitat of the pea pod borer (legume) (*Etiella zinckenella* Tr.) covers the central part of Russia (mainly in the steppe zone and the southern part of the Forest-Steppe of the European part), the North Caucasus, southern Siberia, the Far East, the Baltic states, Belarus, Ukraine, Moldova, Transcaucasia, Kazakhstan, Central Asia, Western Europe (up to southern Finland), North America, Asia Minor, the Middle East, India, China, Korea, Japan, Southeast Asia. The pest is also imported to Australia and America (Graham, 1976; Lutytska, Stankevych, Zabrodina et al., 2019).

Russian scientists A.N. Frolov and M.I. Saulych (Luticka & Stankevych, 2019;

http://www.agroatlas.ru/ru/content/pests/Etiella_zinckenella/map/) compiled the area of the prevalence of pea pod borer and zones of its harmfulness, within which the zone of average harmfulness is distinguished (south of Ukraine, Krasnodar and Stavropol territories, Rostov region, lower Volga region), where the loss of leguminous on average can be 5-6%; the zone of weak harmfulness, where yield losses, as a rule, are below 5% of the limit, in the European part of the former USSR, it covers the territory of legumes growing, in the Asian part-the territory of soybean cultivation with an average July temperature of at least 20 C.

In Ukraine, the species is widespread everywhere, but more numerous and harmful in the Steppe and the south of the Forest-Steppe. It damages pea, lentil, bean, soybean, lupine, locust tree, and Siberian pea shrub, honey locust, in Transcarpathia-hazelnut, watermelon seeds. The number of pea pod borers and their harmfulness increases in dry years. The proximity of soybean crops to the plantations of the Siberian pea shrub and locust tree facilitates greater colonization of beans. According to V. I. Sichkar and O. A. Hrykun (Sichkar & Hrykun, 1982), in Odessa, Mykolaiv, Crimea, and other regions, pea pod borer causes grain loss of up to 1-2 centners/ha of grain and significantly reduces the quality of grain.

Caterpillars of this pest live in beans, feed on young seeds, and often move from one bean to another. In this region, during the spring and summer period, the peapod borer usually produces two generations: the first develops on the Siberian pea shrub, pea, and the second generation on the soybean and locust tree. Given the great harmfulness of this pest, they studied the variability of damage depending on the genotype of the plant and weather conditions, as well as some resistance mechanisms. Similar studies of the Mexican bean beetle, Chloridea cotton moth, leafroller, and other pests are conducted in the United States and Brazil (Graham, 1976; Schillinger, 1976; Smith & Brim, 1979).

As source material, we used a large set of collected samples of soybean varieties from different parts of the world and promising breeding numbers created at the All-Union Breeding and Genetic Institute (Odessa). For a reliable assessment, a favorable background was created to increase the number of pests. The experimental plot was located near the plantations of the Siberian pea shrub and locust tree (no more than 100 m), which are natural reserves of the pea pod borer. Several rows of peas were seeded around the perimeter, which made it possible to create a high density of the first generation of the pest. The samples were studied for three and more years. The degree of damage was calculated mainly during the phase of full ripeness in the laboratory. Damaged beans were opened, and the number of fully or partially damaged seeds was counted. The flight dynamics of second-generation butterflies were studied under field conditions. To do this, we watched the pest's flight for 20-30 days, using a light trap. Butterflies were caught every day or in a day, depending on the activity of the flight, as well as weather conditions (the light trap was not turned on in rainy weather) (Sichkar, Lopatina & Grikun, 1991).

Materials and Methods

The research aims to monitor the colonization of soybean crops by the pea pod borer and determine the level of damage to beans and soybean grain.

Our research on soybean crops was carried out during 2018-2020 in the Kharkiv district of the State Enterprise' Experimental Farm' Elitne, Kharkiv region. Plants were examined for the presence of pea pod borer caterpillars and to determine the percentage of damage to beans and seeds (Luticka & Stankevych, 2018b; Luticka & Stankevych, 2019a).

There are only 26 varieties of Ukrainian and Canadian selection in the field. Soybeans were sown in three terms of sowing, so there was an opportunity to track the development and harmfulness of the pea pod borer in plants in different phases of the growing season. With the help of selecting method, we determined 10 plants in 10 locations (a sample of 100 plants) on each variety and made calculations. All data obtained were processed and inserted into tables (Luticka & Stankevych, 2018a; Luticka & Stankevych, 2019b).

During the route survey of soybean crops, the presence of pea pod borer caterpillars in beans was monitored. Long-term data are inserted into Table 1.

According to the table, the smallest number of pea pod borer caterpillars in 2018 was recorded in Sprytna, Malvina (III decade of April), Raiduga, ES Mentor (II decade of May) 2 specimens/100 plants. All caterpillars were of Malvina variety (III decade of May)-29 specimens/100 plants.

In 2019, the lowest number was in the Biliavka, Vyshyvanka, ES Mentor, Aligator varieties (II decade of May) 2 specimens/100 plants. The Biliavka variety had the most significant number (III decade of April)-22 specimens/100 plants.

In 2020, the smallest number of caterpillars was observed in the Biliavka and Malvina varieties (III decade of May), Korada, ESC Senator (II decade of May) 2 specimens/100 plants. Most of the all on soybean crops of Sprytna variety in the amount of 21 specimens/100 plants.

To determine the percentage of damage to beans by pea pod borer in soybean crops, intact and damaged generative organs were calculated in each variety and three sowing terms. Ten plants were selected for each variety at 10 locations. Data are inserted into Tables 2, 3, 4.

According to Table 2 in the first sowing period (III decade of April), the number of beans per 100 plants ranged from 2431 pieces/100 plants in the Biliavka variety to 3294 in the Malvina variety; in the second sowing period (II decade of May) it reached 2341 pieces/100 plants in the Krasunia variety to 3531 pieces/100 plants in the Aligator variety; in the third period (III decade of May), the number of beans per 100 plants ranged from 2598 pieces/100 plants in the Sprytna variety to 2842 pieces/100 plants in the Malvina variety.

Table 1. Colonization of soybean varieties by pea pod borer caterpillars depending in the sowing period in 2018-2020 in the State Enterprise "Experimental Farm "Elitne" of V.Y.Yuriev Plant Production Institute of NAAS of Ukraine.

Sowing pariod	Variaty	Caterpi	illars which were	e detected, specin	nens/100 plants
Sowing period	variety	201	L8	2019	2020
III decade of April	Biliavka	4	5	2	

		5	5		
	Sprytna	2	4	3	
	Malvina	2	4	2	
Average		2.7	4.3	2.3	
	Biliavka	4	2	5	
	Sprytna	6	5	8	
	Malvina	8	4	6	
	Annushka	7	3	6	
	Korada	3	5	2	
	Vyshyvanka	6	2	5	
	Kobza	8	6	11	
	Krasunia	4	7	6	
	Baika	6	3	7	
	Perlyna	9	5	11	
II decade of May	Raiduga	2	5	10	
	Melodiia	4	9	8	
	Pysanka	10	7	11	
	Sloboda	6	4	8	
	Aleksandryt	7	5	9	
	ESC Senator	8	4	2	
	ES Mentor	2	2	4	
	Aligator	6	2	5	
	Syverka	1	8	7	
	Adamos	6	7	10	
	Muza	11	5	9	
Average		5.9	4.8	7.1	
	Biliavka	25	10	15	
III decade of May	Sprytna	21	11	21	
	Malvina	29	15	18	
average		25	12	18	

Table 2. Percentage of damaged beans in the State Enterprise "Experimental Farm "Elitne" of V.Y.Yuriev Plant Production Institute of NAAS of Ukraine Kharkiv district, Kharkiv region (July 2018).

			Bean	is (pieces)		
Sowing period	Variety	In total, for 100 plants	Intact	Damaged		%
	Biliavka	2431	2417	14	0.6	
III decade of April	Sprytna	3053	3045	8	0.3	
	Malvina	3294	3276	18	0.5	
average		2926	2912.7	13.3	0.47	
	Biliavka	2362	2321	41	1.8	
	Sprytna	3178	3134	35	1.1	
	Malvina	3201	3162	39	1.2	
	Annushka	2698	2671	27	1.0	
	Korada	3402	3380	22	0.7	
	Vyshyvanka	2987	2944	43	1.5	
	Kobza	2604	2573	31	1.2	
	Krasunia	2341	2298	43	1.9	
II decade of May	Baika	3201	3164	37	1.2	
	Perlyna	2571	2541	30	1.2	
	Raiduga	2385	2340	45	1.9	
	Melodiia	2434	2402	32	1.3	
	Pysanka	2806	2777	29	1.0	
	Sloboda	2453	2421	32	1.3	
	Aleksandryt	3069	3050	19	0.6	
	ESC Senator	3283	3267	16	0.5	
	ES Mentor	3207	3187	20	0.6	

Influence of pre-planting and while-planting agricultural measures on the growth, development and productivity of young grape plantations under conditions of the south of Ukraine

	Aligator	3531	3518	13	0.4	
	Syverka	2809	2770	39	1.4	
	Adamos	2411	2386	25	1.0	
	Muza	2734	2703	31	1.1	
Average		2841.3	2810	30.9	1.1	
	Biliavka	2632	2537	95	3.7	
III decade of May	Sprytna	2598	2529	69	2.7	
	Malvina	2842	2770	72	2.6	
Average		2690.7	2612	78.7	3.0	

Table 3. Percentage of damaged beans by pea pod borer caterpillars in the State Enterprise "Experimental Farm "Elitne" of V.Y.Yuriev Plant Production Institute of NAAS of Ukraine Kharkiv district, Kharkiv region (July 2019).

			Beans	(pieces)	
Sowing period	Variety	In total, for 100 plants	Intact	Damaged	%
	Biliavka	2541	2536	5	0.2
III decade of April	Sprytna	2980	2973	7	0.2
	Malvina	3240	3231	9	0.3
Average		2920.3	2913.3	7	0.2
	Biliavka	2602	2591	11	0.4
	Sprytna	3161	3148	13	0.4
	Malvina	2945	2930	15	0.5
	Annushka	2807	2789	18	0.6
	Korada	3575	3563	21	0.6
	Vyshyvanka	2958	2943	15	0.5
	Kobza	2680	2661	19	0.7
	Krasunia	2374	2352	22	0.9
	Baika	3423	3406	17	0.5
	Perlyna	2769	2749	20	0.7
II decade of May	Raiduga	2478	2465	13	0.5
	Melodiia	2595	2577	18	0.7
	Pysanka	2759	2735	24	0.9
	Sloboda	2464	2443	21	0.9
	Aleksandryt	3093	3083	10	0.3
	ESC Senator	3283	3270	13	0.4
	ES Mentor	3342	3334	8	0.2
	Aligator	3567	3548	19	0.5
	Syverka	2669	2648	21	0.8
	Adamos	2517	2494	23	0.9
	Muza	2763	2748	15	0.5
Average		2896.4	2880	17	0.6
	Biliavka	2627	2605	22	0.8
III decade of May	Sprytna	2692	2674	18	0.7
	Malvina	2864	2840	24	0.8
Average		2727.7	2706.3	21.3	0.8

The number of damaged beans per 100 plants in the first sowing period (III decade of April) ranged from 8 to 18 pieces/100 plants in the Sprytna and Malvina varieties, respectively; in the second sowing period (II decade of May), 13 pieces/100 plants (Aligator) to 45 pieces/100 plants (Raduga) were damaged; in the III period (III decade of May), from 69 pieces/100 plants (Sprytna) to 95 pieces/100 plants (Biliavka) were damaged. The lowest percentage of damage to beans was observed in the first sowing period, 0.3% (Sprytna), the highest, 3.7% (Biliavka), in the third sowing period.

According to Table 3, in the first sowing period (III decade of April), the number of beans per 100 plants reached from 2541 pieces/100 plants on the Biliavka variety to 3240 pieces/100 plants on the Malvina variety; in the second sowing period (II decade of May), reached from 2374 pieces/100 plants on the Krasunia variety to 3575 pieces/100 plants on the Korada variety; in the third period (III decade of May), the number of beans per 100 plants was from 2627 pieces/100 plants on the Biliavka variety to 2864 pieces/100 plants on Malvina variety.

The number of damaged beans per 100 plants in the first sowing period (III decade of April) was from 5 to 9 pieces in the Sprytna and Malvina varieties, respectively; in the second sowing period (II decade of May), 11 pieces/100 plants (Biliavka) to 24 pieces/100 plants (Pysanka) were damaged; in the third period (III decade of May), from 18 pieces/100 plants (Sprytna) to 24 pieces/100 plants (Malvina) were damaged. The lowest percentage of damage to beans was observed in the first sowing period-0.3% (Malvina), the highest-0.8% (Biliavka and Malvina) in the third sowing period.

The number of damaged beans per 100 plants in the first sowing period (III decade of April) ranged from 18 to 29 pieces in the Sprytna and Biliavka varieties, respectively; in the second sowing period (II decade of May), 12 pieces/100 plants (ESC Senator) to 51 pieces/100 plants (Vyshyvanka) were damaged; in the third period (III decade of May), 36 pieces/100 plants (Biliavka) to 45 pieces/100 plants (Malvina) were damaged. The lowest percentage of damage to beans was observed in the first sowing period of 0.6% (Malvina and Sprytna), the highest at 1.5% (Sprytna and Malvina) in the third sowing period.

Table 4. Percentage of damaged beans by pea pod borer caterpillars in the State Enterprise "Experimental Farm "Elitne" of V.Y.Yuriev Plant Production Institute of NAAS of Ukraine Kharkiv district, Kharkiv region (July 2020).

			Beans (pieces)			
Sowing period	Variety	In total, for 100 plants	Intact	Damaged	%	
	Biliavka	2612	2568	29	1.1	
III decade of April	Sprytna	3197	3166	18	0.6	
	Malvina	3473	3434	20	0.6	
Average		3094	3056	22.3	0.8	
	Biliavka	2595	2556	39	1.5	
	Sprytna	3294	3251	43	1.3	
	Malvina	3053	3013	40	1.3	
	Annushka	2768	2739	29	1.1	
	Korada	3762	3725	37	1.0	
	Vyshyvanka	3027	2976	51	1.7	
	Kobza	2721	2683	38	1.4	
	Krasunia	2430	2388	42	1.8	
	Baika	3526	3479	47	1.4	
	Perlyna	2629	2593	36	1.4	
II decade of May	Raiduga	2437	2396	41	1.7	
	Melodiia	2584	2545	39	1.5	
	Pysanka	2881	2846	35	1.2	
	Sloboda	2523	2496	27	1.1	
	Aleksandryt	3150	3129	21	0.7	
	ESC Senator	3395	3383	12	0.4	
	ES Mentor	3392	3377	15	0.4	
	Aligator	3664	3646	18	0.5	
	Syverka	2731	2697	34	1.3	
	Adamos	2562	2533	29	1.1	
	Muza	2820	2783	37	1.3	
Average		2949.7	2915.9	33.8	1.2	
	Biliavka	2764	2728	36	1.3	
III decade of May	Sprytna	2681	2642	39	1.5	
	Malvina	2983	2938	45	1.5	
Average		2809.3	2789.0	40.0	1.4	

Table 5. Percentage of damaged seeds by pea pod borer caterpillars in the State Enterprise "Experimental Farm "Elitne" of V.Y.Yuriev Plant Production Institute of NAAS of Ukraine Kharkiv district, Kharkiv region (July 2018).

			Seeas (p	leces)	
Sowing period	Variety	In total, for 100 plants	Intact	Damaged	%
	Biliavka	4851	4826	25	0.5
III decade of April	Sprytna	6101	6087	14	0.2
	Malvina	6498	6465	33	0.5
average		5816.7	5792.7	24	0.4

	Biliavka	4724	4649	75	1.6
	Sprytna	6312	6245	67	1.1
	Malvina	6385	6311	74	1.2
	Annushka	5321	5273	48	0.9
	Korada	6772	6733	39	0.6
	Vyshyvanka	5935	5854	81	1.4
	Kobza	5176	5120	56	1.1
	Krasunia	4602	4523	79	1.7
	Baika	6365	6297	68	1.1
	Perlyna	5142	5087	55	1.1
II decade of May	Raiduga	4745	4662	83	1.8
	Melodiia	4812	4755	57	1.2
	Pysanka	5602	5550	52	0.9
	Sloboda	4893	4838	55	1.1
	Aleksandryt	6101	6067	34	0.6
	ESC Senator	6522	6494	28	0.4
	ES Mentor	6386	6350	36	0.6
	Aligator	7014	6991	23	0.3
	Syverka	5603	5531	72	1.3
	Adamos	4812	4768	44	0.9
	Muza	5426	5370	56	1.0
Average		5650	5593.7	56.3	1.0
	Biliavka	5238	5067	171	3.4
III decade of May	Sprytna	5111	4987	124	2.5
	Malvina	5642	5510	132	2.4
Average		5330.3	5188	142.3	2.8

To determine the percentage of seed damage during the growing season 2018-2020, we counted the number of seeds per plant and the number of intact and damaged seeds and calculated the percentage of damage. In total, there were 100 plants in each variety in the sample. The data are presented in Table 5.

According to Table 5, in the first sowing period (III decade of April), the number of seeds per 100 plants was from 4851 pieces (Biliavka) to 6498 pieces (Malvina). The percentage of damage ranged from 0.2% to 0.5%. In the second sowing period (II decade of May), the number of seeds per 100 plants reached 4724 pieces (Biliavka) to 7014 pieces in the Aligator variety. The percentage of damage ranged from 0.3% to 1.6%. In the third sowing period (III May decade), the number of seeds per 100 plants was from 5111 pieces (Sprytna) to 5642 pieces (Malvina). The percentage of damage ranged from 2.4% to 3.4%.

According to Table 6, in the first sowing period (III decade of April), the number of seeds per 100 plants ranged from 5093 pieces (Biliavka) to 6396 pieces (Malvina). The percentage of damage ranged from 0.1% to 0.3%; In the second sowing period (II decade of May), the number of seeds per 100 plants increased from 4726 pieces (Krasunia) to 7081 pieces on the Aligator variety. The percentage of damage ranged from 0.2% to 0.8%; in the third sowing period (III decade of May), the number of seeds per 100 plants increased from 4726 pieces (Krasunia) to 7081 pieces on the Aligator variety. The percentage of damage ranged from 5236 pieces (Biliavka) to 5638 pieces (Malvina). The percentage of damage ranged from 0.6% to 0.8%.

According to Table 7, in the first sowing period (III decade of April), the number of seeds per 100 plants ranged from 5,200 pieces (Biliavka) to 6,239 pieces (Malvina). The percentage of damage ranged from 0.6% to 1.1%; in the second sowing period (II decade of May), the number of seeds per 100 plants reached 4695 pieces (Krasunia) to 7345 pieces on the Korada variety. The percentage of damage ranged from 0.4% to 1.8%; In the third sowing period (III decade of May), the number of seeds per 100 plants was reached from 5275 pieces (Sprytna) to 5806 pieces (Malvina). The percentage of damage ranged from 1.3% to 1.6%.

Table 6. Percentage of damaged seeds by pea pod borer caterpillars in the State Enterprise "Experimental Farm "Elitne" of V.Y.Yuriev Plant Production Institute of NAAS of Ukraine Kharkiv district, Kharkiv region (July 2019).

Cowing poriod	Variatio		Seeds (piec	es)	
Sowing period	variety	In total, for 100 plants	Intact	Damaged	%
	Biliavka	5093	5084	9	0.1
III decade of April	Sprytna	5993	5981	12	0.2
	Malvina	6396	6380	16	0.3
average		5827.3	5815	12.3	0.2
	Biliavka	5228	5207	21	0.4
II decade of May	Sprytna	6281	6258	23	0.4
	Malvina	5870	5844	26	0.4

Ukrainian Journal of Ecology, 11(7), 2021

	Annushka	5579	5547	32	0.6
	Korada	7041	7004	37	0.5
	Vyshyvanka	5879	5851	28	0.5
	Kobza	5345	5310	35	0.7
	Krasunia	4726	4686	40	0.6
	Baika	6722	6693	29	0.4
	Perlyna	5504	5467	37	0.7
	Raiduga	4952	4929	23	0.5
	Melodiia	5162	5129	33	0.6
	Pysanka	5468	5426	42	0.7
	Sloboda	4923	4883	40	0.8
	Aleksandryt	6086	6068	18	0.3
	ESC Senator	6470	6446	24	0.4
	ES Mentor	6595	6580	15	0.2
	Aligator	7081	7046	35	0.5
	Syverka	5240	5201	39	0.7
	Adamos	4990	4948	42	0.8
	Muza	5440	5412	28	0.5
Average		5742	5711.2	30.8	0.5
	Biliavka	5236	5195	41	0.8
III decade of May	Sprytna	5345	5311	34	0.6
	Malvina	5638	5593	45	0.8
Average		5406.3	5366.3	40	0.7

Table 7. Percentage of damaged seeds by pea pod borer caterpillars in the State Enterprise "Experimental Farm "Elitne" of V.Y.Yuriev Plant Production Institute of NAAS of Ukraine Kharkiv district, Kharkiv region (July 2020).

			Seeds (pieces)	
Sowing period	Variety	In total, for 100 plants	Intact	Damaged	%
	Biliavka	5200	5141	58	1.1
III decade of April	Sprytna	6058	6022	36	0.6
	Malvina	6239	6199	40	0.6
Average		5832.3	5787.3	44.7	0.8
	Biliavka	5123	5045	78	1.5
	Sprytna	6421	6335	86	1.4
	Malvina	6125	6045	80	1.3
	Annushka	5578	5520	58	1.1
	Korada	7345	7271	74	1.0
	Vyshyvanka	6041	5939	102	1.7
	Kobza	5226	5150	76	1.5
	Krasunia	4695	4611	84	1.8
	Baika	6980	6886	94	1.4
	Perlyna	5123	5051	72	1.4
II decade of May	Raiduga	4860	4778	82	1.7
	Melodiia	5103	5025	78	1.6
	Pysanka	5648	5578	70	1.3
	Sloboda	5016	4962	54	1.1
	Aleksandryt	6186	6142	44	0.7
	ESC Senator	6593	6569	24	0.4
	ES Mentor	6603	6573	30	0.5
	Aligator	7125	7089	36	0.5
	Syverka	5382	5314	68	1.3
	Adamos	5086	5028	58	0.6
	Muza	5586	5511	75	1.4
Average		5802.1	5734.4	67.8	1.2
III decade of May	Biliavka	5537	5465	72	1.3

Ukrainian Journal of Ecology, 11(7), 2021

	Sprytna	5275	5197	78	1.5
	Malvina	5806	5716	90	1.6
Average		5539.3	5459.3	80	1.5

In our study, experiments were conducted on seeds damaged by pea pod borer caterpillars under the laboratory conditions of the State Enterprise "Experimental Farm "Elitne" of V.Y.Yuriev Plant Production Institute of NAAS of Ukraine Kharkiv district, Kharkiv region. The seeds were analyzed for fat and protein content. The data are included in Table 8.

Table 8. Results of analysis of protein and oil content of soybean samples from the State Enterprise "Experimental Farm "Elitne" of V.Y.Yuriev Plant Production Institute of NAAS of Ukraine Kharkiv district, Kharkiv region in 2018-2020.

Сгор	The name	2018		2019		2020		Average for 2018- 2020	
Soybean	of a sample	Protein content, %	Oil content, %	Protein content, %	Oil content, %	Protein content, %	Oil content, %	Protein content, %	Oil content, %
	Undamaged I	33.20	21.29	40.83	20.53	36.3	21.29	36.78	21.04
	Undamaged II	35.00	21.32	40.77	20.66	36.9	21.38	37.56	21.12
	Undamaged III	32.78	21.32	41.08	20.77	36.6	21.43	36.82	21.17
	Average	33.66	21.31	40.89	20.65	36.6	21.36	37.05	21.10
	Damaged I	35.72	20.36	41.00	18.96	38.4	20.20	38.37	19.84
	Damaged II	36.11	20.74	41.08	18.86	38.8	20.12	38.66	19.90
	Damaged III	36.14	19.80	41.13	18.80	39.1	19.96	39.09	19.52
	Average	35.99	20.3	41.07	18.87	38.76	20.09	38.61	19.75

According to Table 8, on average for 2018-2020, the following results were obtained: damaged seeds-38.61% of protein and 19.75% of oil; undamaged seeds-37.05% and 21.10% of oil.

During 2018-2020, soybean crops were monitored for pea pod borer caterpillars and the most colonized varieties were sprayed with insecticides. The obtained data are included in Tables 9, 10, 11.

According to Table 9, it can be seen that the most significant technical efficiency on the 3^{rd} day was shown by the preparation Nurel D, 55% emulsion concentrate (1.0 l/ha)-28%, on the 7^{th} day-Antigusin 50% suspension concentrate (0.15 l/ha)-59%, on the 14^{th} day-preparation Koragen,20% suspension concentrate (0.2 l/ha)-82%.

Table 9. Technical efficiency of insecticide application in protecting soybean from pea pod borer caterpillars at the State Enterprise "Experimental Farm "Elitne" of V.Y.Yuriev Plant Production Institute of NAAS of Ukraine Kharkiv district, Kharkiv region in 2018.

Experiment variant	(specim	lation dens t) before sp	Technical efficiency of action (%) on the 3 rd , 7 th and 14 th days after				
•	on the 3	", / " and 3	14 day at	ter spraying	3	spray 7	ying 14
Control H ₂ O	0.29	0.24	0.27	0.32	5	,	14
Koragen, 20% suspension concentrate (0.2 l/ha)	0.29	0.24	0.14	0.05	17	51	82
Nurel D, 55% emulsion concentrate (1.0 l/ha)	0.29	0.21	0.18	0.10	28	38	66
Chlorpyrivit-agro, 55% emulsion concentrate (1.0 l/ha)	0.29	0.26	0.17	0.13	10	41	55
Antigusin 50% suspension concentrate (0.15 l/ha)	0.29	0.22	0.12	0.08	24	59	72
SED05		0.19	0.16	0.12			
Note: * SED - the most mino	r essential diff	erence.					

Table 10. Technical efficiency of insecticide application in protecting soybean from pea pod borer caterpillars at the State Enterprise "Experimental Farm "Elitne" of V.Y.Yuriev Plant Production Institute of NAAS of Ukraine Kharkiv district, Kharkiv region in 2019.

Experiment variant	(specin on the 3	lation den :) before s 14 th day a	Technical efficiency of action (%) on the 3 rd , 7 th and 14 th days after spraying				
	Before	3	7	14	3	7	14
Control H ₂ O	0.15	0.16	0.18	0.18			
Koragen,20% suspension concentrate (0.2 l/ha)	0.15	0.11	0.08	0.04	26	46	73
Nurel D, 55% emulsion concentrate (1.0 l/ha)	0.15	0.13	0.10	0.07	13	33	53
55% emulsion concentrate (1.0 l/ha)	0.15	0.11	0.08	0.06	26	46	60
Antigusin 50% suspension concentrate (0.15 l/ha)	0.15	0.10	0.07	0.05	33	53	66
SED05		0.09	0.09	0.10			
Note: * CED the meet mine	" accordial diff	aranaa					

Note: * SED - the most minor essential difference.

According to table 10 the best technical efficiency on the 3rd was shown by preparation Antigusin 50% suspension concentrate (0.15 l/ha)-33%, on the 7th day-also preparation Antigusin 50% suspension concentrate (0.15 l/ha)-53%, on the 14th day-preparation Koragen, 20% suspension concentrate (0.2 l/ha)-73%.

Table 11. Technical efficiency of insecticide application in protecting soybean from pea pod borer caterpillars at the State Enterprise "Experimental Farm "Elitne" of V.Y.Yuriev Plant Production Institute of NAAS of Ukraine Kharkiv district, Kharkiv region in 2020.

Experiment variant	Pest populat before spray	(specime the 3 rd , 7 th oraying	ns/plant) ^h and 14 th	Technical efficiency of action (%) on the 3 rd , 7 th and 14 th days after spraying				
	Before	3	7	14	3	7	14	
Control H2O	0.21	0.18	0.20	0.24	-	-	-	
Koragen,20% suspension concentrate (0.2 l/ha)	0.21	0.18	0.14	0.04	14	33	81	
Nurel D, 55% emulsion concentrate (1.0 l/ha)	0.21	0.17	0.13	0.08	19	38	62	
Chlorpyrivit-agro, 55% emulsion concentrate (1.0 l/ha)	0.21	0.15	0.11	0.06	29	47	71	
Antigusin 50%								
suspension concentrate (0.15 l/ha)	0.21	0.17	0.10	0.07	19	52	67	
SED05		0.14	0.08	0.08				
Note: * SED-the smallest essential difference.								

According to Table 11 the best technical efficiency on day 3 was shown by preparation Chlorpyrivit-agro, 55% emulsion concentrate (1.0 l/ha) -29%, on day 7 Antigusin preparation, 50% suspension concentrate (0.15 l/ha)-52%, on day 14 Koragen preparation, 20% suspension concentrate (0.2 l/ha)-81%.

Conclusion

According to the data of the experiments, it can be concluded that the soybean plants that were sown in the third decade of May and reached the grain filling phase were the most damaged. The number of caterpillars in soybean plants in 2018 ranged from 2 to 29 specimens/100 plants, in 2019-from 2 to 22 specimens/ 100 plants, in 2020-from 2 to 21 specimens/100 plants. When soybean plants were examined, the damage was also found to beans and seeds. In 2018, the percentage of damage ranged from 0.3% to 3.7%, in 2019 from 0.2% to 0.9%, and in 2020 from 0.6% to 1.8%. The percentage of damaged seeds was: in 2018-from 0.2% to 3.4%, in 2019-from 0.1% to 0.8%, and in 2020-from 0.6% to 1.8%. Analysis of seeds for oil and protein content showed that when seeds are damaged by pea pod borer, the oil content is greatly reduced and is a significant indicator of soybean seed quality. With the massive damage to beans caused by this pest, it can be lost 70-80% of the yield (depending on the sowing period, even up to 90%). During 2018-2020, soybean crops were monitored for pea pod borer caterpillars and the most colonized varieties were sprayed with insecticides. In 2018, the highest technical efficiency was shown on the third day by the preparation of Nurel D, 55%

emulsion concentrate (1.0 l/ha)-28%, on the 7th day-Antigusin 50% suspension concentrate (0.15 l/ha)-59%, on the 14th daypreparation Koragen, 20% suspension concentrate (0.2 l/ha)-82%. In 2019, the best technical efficiency on the third day was shown by preparation of Antigusin 50% suspension concentrate (0.15 l/ha)-33%, on the seventh day-also preparation of Antigusin 50% suspension concentrate (0.15 l/ha)-53%, on the 14th day-Preparation Koragen, 20% suspension concentrate (0.2 l/ha)-73%. In 2020, the best technical efficiency on day 3 was shown by Chlorpyrivit-agro preparation, 55% emulsion concentrate (1.0 l/ha)-29%, on day 7 Antigusin 50% suspension concentrate (0.15 l/ha)-52%, on day 14 Koragen preparation, 20% suspension concentrate (0.2 l/ha)-81%.

References

http://www.agroatlas.ru/ru/content/pests/Etiella_zinckenella/map/

Graham, L. (1976). Coming: beans that will bug the bugs. Soybean Dig, 36:25-26.

Hattori, M. (1987). Evidence of ammonia presence in the brush–organs of the limabean pod borer, Etiella zinckenella Treischke (Lepidoptera:Pyralidae). Applied Entomology Zoology, 22:399-401.

Luticka, N.V., Stankevych, S.V. (2018a). Vidovij sklad komah-fitofagiv soyi u Shidnomu Lisostepu Ukrayini. Fundamentalni i prikladni problemi suchasnoyi ekologiyi ta zahistu roslin: mater. mizhnar. nauk.-prakt. konf. HNAU im. V.V. Dokuchayeva,m. Harkiv, p:74-76 (in Ukrainian).

Luticka, N.V., Stankevych, S.V. (2018b). Shkidniki soyi v Ukrayini. Materiali pidsumkovoyi naukovoyi konferenciyi prof.-vikl. skladu, aspirantiv i zdobuvachiv HNAU im. V.V. Dokuchayeva, m. Harkiv, p:137-138 (in Ukrainian).

Luticka, N.V., Stankevych, S.V. (2019a). Shkidliva entomofauna v sviti ta Ukrayini. Visnik HNAU. Seriya: Fitopatologiya ta Entomologiya, 1:79-88 (in Ukrainian).

Luticka, N.V., Stankevych, S.V. (2019b). Shkidlivist akaciyevoyi vognivki na soyi v DP Institutu roslinnictva im. V. Ya. Yur'yeva NAANU. Zbirnik pidsumkovoyi naukovo-prak.konferenciyi prof.-viklad. skladu i zdobuvachiv naukovih stupeniv HNAU im. V. V. Dokuchayeva. m. Harkiv, pp:115-117 (in Ukrainian).

Lutytska, N.V., Stankevych, S.V., Zabrodina, I.V. (2019). Soybean insect pests: A review of Ukrainian and world data. Ukrainian Journal of Ecology, 9:208-213.

Schillinger, J. (1976). Host resistance to insects in soybeans. World Soybean Research, pp:579-584.

Sichkar, V.I., Hrykun, O.A. (1982). Razlichie kollekcionnyh obrazcov soi povrezhdaemosti akacievoj ognevkoj. Nauchno-tehn. byul. VSGI, p:67-72 (in Russian).

Sichkar, V.I., Lopatina, N.V., Grikun, O.A. (1991). Morfologicheskie osobennosti form soi, ustojchivih k akacievoj ognevke. Selskohozyajstvennaya Biologiya, 1:162-169 (in Russian).

Smith, C.M., Brim, C.A. (1979). Resistance to Mexican been beetle and corn earworm in soybean genotypes derived from PI 227687. Crop Science, p:313-314.

Stankevych, S.V., Baidyk, H.V., Lezhenina, I.P. (2019). Wandering of mass reproduction of harmful insects within the natural habitat. Ukrainian Journal of Ecology, 9:578–583.

Stankevych, S.V., Biletskyj, Ye.M., Zabrodina, I.V. (2020). Cycle populations dynamics of harmful insects. Ukrainian Journal of Ecology, 10:147-161.

Stankevych, S.V., Biletskyj, Ye.M., Zabrodina, I.V. (2020). Prognostication in plant protection. Review of the past, present and future of nonliner dynamics method. Ukrainian Journal of Ecology, 10:225-234.

Stankevych, S.V., Lezhenina, I.P., Zabrodina, I.V., Zhukova, V.L. (2021). Karantinni organizmi (z osnovami ekspertizi pidkarantinnih materialiv). Harkiv: FOP Brovin O.V (in Ukrainian).

Stankevych, S.V., Vasylieva, Yu.V., Golovan, L.V. (2019). Chronicle of insect pests massive reproduction. Ukrainian Journal of Ecology, 9:262-274.

Citation:

Lutytska, N.V., Stankevych, S., Romanov, O., Mikheev, V.G., Balan, H.O. (2021). Harmfulness of pea pod borer (*Etiella zinckenella* Tr. 1832) in soybeans in the eastern Forest-Steppe of Ukraine. Ukrainian Journal of Ecology, 11 (7), 77-86.

(cc) BY This work is licensed under a Creative Commons Attribution 4.0. License