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The main goal of this paper was to analyze intrapopulation variation of both morphological traits and shell banding polymorphism 
using the example of a continuous population (a metapopulation) of the land snail Cepaea vindobonensis (Férussac, 1821). A total 
of 14 samples of the land snail C.  vindobonensis from a population located in the “Dubki” Park (Ukraine, Mykolayiv) were collected 
in May-July 2007. The land snail collection sites are divided into three areas by buildings and asphalt roads, indicated by the Latin 
letters A, B and C. The major diameter of shell (MJD), the minor diameter of shell (MID) and the shell height (SH) were measured 
with a digital calliper to the nearest 0.05 mm. Two shell shape indices (SF1 and SF2) were also computed.  
A high level of the intrapopulation variation of the land snail C. vindobonensis was found in our study. Significant differences 
between sample means were found for all shell traits and indices used (except for SF1), however, maximum difference was noted 
for SH and SF2 (in both cases: P < 0.001).  About 80% of the total variation of the variance-covariance matrix was explained by the 
1st and 2nd Principal Components (PC1 and PC2). The PC1 was characterized by high positive factor loadings of MJD, MID and SH 
and thus can be interpreted as “shell size dimension” and the PC2 had a high correlation with SF2 and thus it can be interpreted as 
“shell globularity”. The PC1 and PC2 determined a high level of spatial differentiation of intrapopulation morphological variation of 
the land snail C. vindobonensis. Samples with small (area A) and large (areas B and C) shells were separated from each other 
according to the PC1.  Areas B and C were characterized by individuals with flatness and globularity shells, respectively. 
The areas A, B and C differed significantly in the total number of morphs, average number of morphs and frequency of rare morphs 
(Kruskal-Wallis H-test; in all cases P < 0.010). At the same time, the highest value of phenetic diversity was noted for samples 

collected within A and C areas. In general all phenetic diversity estimators showed a positive correlation with sample size 
(Spearman's correlation coefficient; in all cases P < 0.05). It was found that the type of biotope did not likely affect the frequency of 
individual morphs with respect to the shell banding polymorphism pattern. With regard to the most common morphs two patterns of 
the spatial arrangement of the intrapopulation variation were found – clinal pattern was for the frequency of pallescens morph and 
chaotic pattern was for frequency of “12345” morph.  
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Introduction 
Many species of the molluscs display an uncommon phenotypic plasticity with high interpopulation and intrapopulation 
morphological variability, which could be advantageous for coping with habitat modifications (Van Marion, 1981; Harvey & Vincent, 
1991; Yusseppone et al., 2018). Analysis of intrapopulation morphometric variation in Pisidium subtruncatum Malm, 1855 (Bivalvia) 
showed that variability is higher in habitats with high temporal and spatial environmental variability and lower in habitats with low or 
reduced environmental heterogeneity (Funk & Reckendorfer, 2008). The functional significance of the variability found in the shell 
shape variation in the Nassariid Buccinanops globulosus (Kiener, 1834) (Gastropoda) has been discussed in terms of the flexibility of 
developmental programmes for morphology as well as the evolution of phenotypic plasticity (Avaca et al., 2013).  

Land snails are an ideal model object for studying the processes of genetic intrapopulation fine-scale spatial differentiation and 
subdivision (Zhukov et al., 2019). Their population size are always large, but in space individuals are often distributed overcrowded, 
the migratory/invasive capacity is low, but passive dispersal (incl. due to anthropochory) is a common phenomenon, and their shell 
partially preserves the results of early phase of ontogenesis and can be stored for decades. In addition, the land snail shell reflects 
the manifestation of genetic variation in quantitative and qualitative traits (Clarke et al., 1978). 
Variation of the shell size and shape in land snails, in most situations is considered from the taxonomic point of view and used to 
identify cases of inter(sub)specific differences in taxonomically related groups. (Armbuster, 1995; Chiba, 1998; Giokas, 2000; Gould 
& Woodruff, 1985; Jordaens et al., 2009; Woodruff & Gould, 1980). Much less attention is paid to the manifestations of intraspecific 
and intrapopulation variation, as well as to the search for causes and patterns of their formation. The last detailed review of cases 
of the land snails intraspecific variation in shell shape and shell size with special consideration of its causes was given more than 30 
years ago (Goodfriend, 1986). However, a large amount of actual material, which illustrates the formation of different patterns of 
the conchological variation among numerous species of land snails, has been accumulated over the last few years (see review 
Kramarenko, 2016).  
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The simple sampling pattern still prevails in the analysis of interpopulation variation where each population is characterized by one 
single sample (it sometimes contains a small number of specimens). However, earlier we noted a high level of conchiometric 
variation within continuous populations (metapopulations) of a land snail Brephulopsis cylindrica (Menke, 1828). Generally, the 
intrapopulation shell size and shape variation component is nearly 1/5 from the sum of the intra- and interpopulation variation 
(Kramarenko, 2016).  

Thereby the change in sampling strategy from “single population – single sample” to “single population – several samples” has been 
required. However in such event, the analysis of interpopulation differentiations (i.e. early stages of an infra-species diversification) 
should be organized in form of nested ANOVA, namely, several independent samples must be collected within a studied population 
(Kramarenko & Dovgal, 2014). 
Accordingly, the main goal of this paper was to analyze intrapopulation variation of both morphological traits and shell banding 
polymorphism using the example of a continuous population (a metapopulation) of the land snail Cepaea vindobonensis (Férussac, 
1821). 
 

Materials and Methods 

We collected 14 samples of land snail C. vindobonensis from “Dubki” Park (Ukraine, Mykolayiv, 46.9796, 32.069) in May-July 2007. 
The plot was 800 m in length and 400 m in width. The park was more or less equable artificial oak planting with occasional bush 
thickets. The land snail sites were divided into three areas by buildings and asphalt roads, indicated by the Latin letters A, B and C 
(Figure 1). 

 
 
Figure 1. Map of sampling sites for the land snail C. vindobonensis in the “Dubki” Park. 
 
Only adult individuals (and their empty shells) of the land snail C. vindobonensis with shell aperture with reflected lip were collected. 
In each sample, the specimens (and their empty shells) were taken within an area of approximately 25 m2. On average, each 
sample contained about a hundred snails (or their shells), but the size of individual samples ranged from 46 to 184 individuals.  
Thirty shells were randomly selected from each sample. The major diameter of shell (MJD), the minor diameter of shell (MID) and 
the shell height (SH) were measured with a digital calliper to the nearest 0.05 mm according to Sverlova et al. (2006). Two shell 
shape indices, SF1 (= MJD/MID) and SF2 (= SH/MJD), were also computed.  
The analysis was conducted using the descriptive statistics (Mean ± SE) of the shell traits and indices for each sample. To compare 
the degree of morphological differentiation within and between areas, the nested ANOVA was used for all shell traits and indices of 
the land snail C. vindobonensis. For Principal Components Analysis (PCA) the three morphometric traits and the two shell shape 
indices, mentioned above, were used to reduce the dimensionality of the highly correlated morphological data. 
The peculiarities of snail shell banding polymorphism were analyzed in laboratory conditions. In this case, different morphs were 
denoted by the conventional system (Cain & Sheppard, 1950). The shell’s bands were numbered from “1” to “5”, counting from the 
suture between the last and penultimate whorls to the umbilicus. In the absence of a band (or several bands), the number in their 
formula was zero. In the case of fusion two or more bands, their numbers in the formula are combined with parentheses. 
In addition, two indicators of intra-population diversity – the average number of morphs (μ ± SEμ) and the frequency of rare 
morphs (hμ ± SEhμ) – were calculated based on the formulas (Zhivotovsky, 1991): 
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The Chi-square tests of significant differences in morph frequencies as between areas, as among sites within areas were computed 
using the program PAST 2.14 (Hummer et al., 2001).  
The Moran’s spatial autocorrelation index (Moran’s I) was measured to describe of micro-spatial patterns of the morphological 
variation. Spatial autocorrelation is defined as the association of the values of one geographically distributed variable with the values 
of the same variable at other localities (Sokal & Oden, 1978). Thus, spatial autocorrelation coefficients index (Moran’s I) is the 
expression of similarities between neighboring locations (Moran, 1950). All statistical procedures were done with SAM v. 4 software 
(Spatial Analysis in Macroecology, Rangel et al., 2006). 
 

Results 

Intrapopulation morphological variations 
 The shell traits and indices for 14 sites within studied population of the land snail C. vindobonensis are presented in Table 1. 
Significant differences between sample means were found for all shell traits and indices used (except for SF1), however, maximum 
difference was noted for SH and SF2 (in both cases P < 0.001).  Clear spatial differentiation was noted only for shell size (Table 1). 
The largest diameter of shell was recorded among C. vindobonensis, which inhabited B and C areas, while molluscs with the 
smallest diameter were found in area A. With respect to shell height, the largest in size individuals of C. vindobonensis inhabited 
area B, and individuals with a minimum shell height were most commonly found in area A.  For SF2, the chaotic pattern in spatial 

arrangement of the intrapopulation morphological differentiation was noted. Within same areas, C. vindobonensis samples with both 
minimum and maximum values of this index were marked (Table 1). Results of the nested ANOVA of the shell traits and indices for 
14 sites within studied population of the land snail C. vindobonensis are presented in Table 2. A strong influence of the “area” factor 
was noted for all shell traits and indices used (except for SF1), while SH and SF2 were characterized by a significant level of 
variation among sites within areas. 
 
Table 1. The shell measurements (Mean ± SE) for 14 sites with population of Cepaea vindobonensis. 
 

Site Shell trait and index 

MJD (mm) MID (mm) SH (mm) SF1 SF2 

Mean SE Mean SE Mean SE Mean SE Mean SE 

A1 22.83 0.26 19.75 0.21 16.32 0.19 1.156 0.006 0.715 0.006 

A2 23.21 0.15 19.89 0.14 15.98 0.15 1.167 0.003 0.688 0.004 

A3 22.78 0.17 19.61 0.17 16.10 0.16 1.162 0.007 0.707 0.007 

A4 22.73 0.15 19.65 0.14 16.53 0.14 1.157 0.006 0.728 0.004 

A5 22.80 0.17 19.67 0.12 15.79 0.13 1.160 0.007 0.693 0.006 

A6 23.08 0.18 20.08 0.15 15.93 0.16 1.150 0.007 0.691 0.006 

B1 22.95 0.18 19.78 0.14 15.77 0.12 1.160 0.004 0.688 0.004 

B2 23.10 0.21 19.91 0.14 16.34 0.16 1.160 0.006 0.708 0.007 

B3 23.19 0.15 19.98 0.12 16.64 0.12 1.161 0.004 0.718 0.005 

B4 23.37 0.20 20.18 0.13 16.52 0.14 1.158 0.006 0.708 0.006 

B5 23.20 0.12 20.07 0.12 16.52 0.15 1.156 0.004 0.712 0.005 

C1 23.04 0.16 19.80 0.15 16.26 0.17 1.164 0.006 0.706 0.007 

C2 23.26 0.19 20.30 0.18 15.67 0.15 1.147 0.007 0.674 0.006 

C3 23.59 0.16 20.14 0.16 16.27 0.18 1.172 0.005 0.690 0.008 

F(13; 406) 1.93 2.05 4.40 1.19 6.27 

P 0.025 0.016 < 0.001 ns < 0.001 

ns: not significant (P > 0.05). 

 
Table 2. Results of the nested ANOVA of the shell measurements for 14 sites with population of C. vindobonensis. 
 

Shell trait and index Source of variation 
Between areas 

F2;406 (P) 
Among sites within areas 

F11;406 (P) 

MJD 5.68 (0.004) 1.25 (ns) 
MID 4.82 (0.009) 1.55 (ns) 
SH 4.94 (0.008) 4.31 (<0.001) 
SF1 0.17 (ns) 1.38 (ns) 
SF2 7.81 (<0.001) 5.99 (<0.001) 

 
Factor loadings for the PC’s on the shell traits and indices of the land snail C. vindobonensis based on the Principal Component 
Analysis are presented in Table 3. About 80% of the total variation of the variance-covariance matrix was explained by the 1st and 
2nd Principal Components. The Principal Component 1 (PC1) was characterized by high positive factor loadings of MJD, MID and SH 
and thus can be interpreted as “shell size dimension”. The Principal Component 2 (PC2) had a high correlation with SF2 and thus it 
can be interpreted as “shell globularity”. 
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Table 3.  Factor loadings for the PC’s on the shell traits and indices of C. vindobonensis.  
 

Shell trait and index Principal Component 
PC1 PC2 

MJD 0.858 0.510 
MID 0.896 0.085 
SH 0.816 -0.438 
SF1 -0.030 0.657 
SF2 0.148 -0.924 

% cumulative variation 44.51 34.92 

 
The PC1 and PC2 determined a high level of spatial differentiation of intrapopulation morphological variation of the land snail 
C. vindobonensis. Samples with small (area A) and large (areas B and C) shells were separated from each other according to the 
PC1 (Figure 2A). Areas B and C were characterized by individuals with flatness and globularity shells, respectively (Figure 2B). 
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Figure 2 A. Scattered plot for the 1st and 2nd Principal Components in 14 sites with population of C. vindobonensis.   
B. General scheme of interpretation for the 1st and 2nd Principal Components. 
 

Moran’s index for morphometric shell traits and indices within studied population of the land snail are presented in Figure 3. For 
MJD and MID there is high positive autocorrelation for the smallest lags and gradual decrease of Moran's index of spatial 
autocorrelation with increasing distance between sites (up to negative values). This indicates the formation of a clearly defined clinal 
pattern in spatial arrangement of the intrapopulation morphological variation. Whereas for SH and two shell shape indices, the main 
characteristic of spatial variation within the studied population of C. vindobonensis had completely random nature, as evidenced by 
the shape of their correlograms and the absence of significant values of Moran's index of spatial autocorrelation (Figure 3). 
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Figure 3. Moran’s index for morphometric shell traits and indices within population of C. vindobonensis: A – MJD; B – MID; C – SH; 
D – SF1; E – SF2. (Significant values of Moran’s index indicated as solid circles: * P < 0.05, ** P < 0.01, *** P < 0.001). 
 
Intrapopulation shell banding polymorphism 
For C. vindobonensis two types of polymorphism were considered: in relation to the shell colour and to banding polymorphism. In 
the first case, all shells were divided into two groups: the first one included shells with a sandy-green colour with light bands 
(pallescens morph), and in the second group there were shells with almost white background, on which clearly dark brown or black 
pigment bands are visible. In total, ten morphs in the shell banding polymorphism of the land snail C. vindobonensis were registered 
in the studied population. Two roads that divided the collection sites into three areas, made a significant contribution to the 
formation of the microspatial phenetic structure of the land snail C. vindobonensis population. In area A, the frequency of pallescens 
morph among the samples was very low (0.013…0.210; average: 0.099), and in area B, on the contrary, very high (0.217…0.791; 
average: 0.626). Samples in area C occupied an intermediate position with a frequency of pallescens morph of 0.295…0.359 
(average: 0.326). Statistically significant difference between the frequency of pallescens morph of the land snail C. vindobonensis 
was noted between separate areas (χ2 = 302.08; df = 2; P < 0.001) and also among sites within studied areas (χ2 = 83.16; df = 
11; P < 0.001). In regard to the most common morph (“12345”), significant difference was observed only between these areas (χ2 
= 13.80; df = 2; P = 0.001), while there was no significant difference among sites within areas (χ2 = 15.17; df = 11; P = 0.175). A 
similar result was noted for the morph “(12)3(45)” for which significant difference was noted only between areas (χ2 = 11.93; df = 
2; P = 0.003). Noteworthy is the fact that (with the only exception) all specimens of the land snail C. vindobonensis with this morph 
were found only in area C. Among morphs with fused bands, significant difference between areas was found for morph “F(23)” (χ2 
= 13.73; df = 2; P = 0.001); individuals of this morph were registered only (with only one exception) within A and C areas. In all 
the cases described above, significant differences among sites within studied areas were not revealed.  
Three these areas and all sites were also differed in estimates of the general phenetic diversity of Zhivotovsky.  The highest average 
number of morphs (μ = 3.12 ± 0.31) was recorded in the sample from the site C2, while the lowest score (μ = 1.00) was registered 
within sites B3 and B4. The areas A, B and C differed significantly in the total number of morphs, average number of morphs and 
frequency of rare morphs (Kruskal-Wallis H-test; in all cases P < 0.010). At the same time, the highest value of phenetic diversity 
was noted for samples collected within A and C areas.  
In general all phenetic diversity estimators showed a positive correlation with sample size (Spearman's correlation coefficient; in all 
cases P < 0.05). In relation to the frequency of rare morphs, this dependence has asymptotic behavior, i.e., at n > 60...80, this 
indicator value not changed any more (Figure 4A). A similar curvilinear relationship was also observed between the total number of 
morphs and the frequency of rare morphs in samples of the land snail C. vindobonensis within the studied population (Figure 4B).  
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Figure 4. Dependence of rare morph frequency on sample size (A) and number of morphs (B). 
 
It was found that the type of biotope did not likely affect the frequency of individual morphs with respect to the shell banding 
polymorphism  of the land snail C. vindobonensis. (In this case, a negative result may indicate both the absence of such relationship 
and the narrowness of the spectrum of the factor variable.) 
Moran’s index for the shell banding polymorphism characters within studied population of the land snail C. vindobonensis are 
presented in Figure 5. With regard to the most common morphs two patterns of the spatial arrangement of the intrapopulation 
variation were found – clinal pattern was for the frequency of pallescens morph (Figure 5A) and chaotic pattern was for frequency 

of “12345” morph (Figure 5B). 
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Figure 5. Moran’s index for the frequency of pallescens moprh (A) and the “12345” morph (B) within population of 
C. vindobonensis. (Significant values of Moran’s index indicated as solid circles: ** P < 0.01, *** P < 0.001). 
 

Discussion 

A high level of the intrapopulation variation of the land snail C. vindobonensis within a continuous population (a metapopulation), 
occupying an area of about 800 × 400 m, was found in our study. Spatial variation in morphological traits and gene frequencies 
through space are common for many species of plants and animals. The heterogenic distribution of genetic variation within and 
between local populations is provided by the mutation events, gene drift (due to limited population size) and different forms of 
natural selection, while the gene flow creates the prerequisites for the formation of genetic homogeneity (Endler, 1977; Slatkin, 
1987). Asphalt roads, dividing the population territory into three areas, had a significant effect of insularisation, manifesting 
themselves for both shell morphological traits and banding polymorphism. According to A. Baur & B. Baur (1990), populations of the 
land snail Arianta arbustorum (L., 1758), separated by paved roads with high traffic densities, may be isolated from each other. 
They also showed in their experiment that only one of the recaptured snails crossed the paved road and two crossed the track, 
indicating that the road and, to a minor extent, the track acted as dispersal barriers. 
The negative urban roads effect was considered in the review J. Underhill & P. Angold (1999). They showed that the impacts of 
roads in the ecological landscape include habitat loss, fragmentation, and degradation. These interrupt and modify natural 
processes altering community structures and in the longer term, population dynamics. Besides that, road construction kills sessile 
and slow-moving organisms (such as land snails), injures organisms adjacent to a road, and alters physical conditions beneath a 
road. Vehicle collisions affect the demography of many species, both vertebrates and invertebrates (Trombulak & Frissell, 2000). 
Using another example of a large helicide, Cornu aspersum (Müller, 1774), it was shown that urban areas are highly fragmented 
and thereby exert strong constraints on individual dispersal and areas with a high percentage of roads decreased genetic 
differentiation between populations. 
On the other hand, urban transport infrastructures facilitate passive snail dispersal. At a local scale, corresponding to active 
dispersal, unfavourable habitats (wooded and impervious areas) isolate populations (Balbi et al., 2018). 
In addition, land snails can use the information potentially exploitable by conspecifics during movement (through mucus trails).  As 
it has been recently shown with the land snail C. aspersum, dispersers followed mucus trails more frequently than expected by 
chance, contrary to non-dispersers. Trail-following by dispersers may reduce dispersal costs by reducing energy expenditure and 
helping snails find existing habitat or resource patches (Vong et al., 2019). 
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We have noted the existence of two spatial arrangement patterns in intrapopulation variantion, which are clinal and chaotic. The 
manifestation of the clinal pattern of variation in conchiometric traits at a fine spatial scale (at distances of 200 ... 1000 m) has been 
previously noted for the land snails Cepaea hortensis (Muller, 1774) (Bengtson et al., 1979) and Rhagada convicta (Cox, 1870) 
(Stankowski, 2011). Among other gastropod types, the formation of the clinal pattern of variation of shell traits within areas ranging 
from several tens to several hundred meters is also a frequent occurrence. A similar pattern was revealed, for example, for the 
marine gastropod mollusk Littorina striata King & Broderip, 1832 (De Wolf et al., 1997) and for the freshwater snail Mexipyrgus 
churinceanus Taylor, 1966 (Hershler &Minckley, 1986). As it is known, the formation of the clinal pattern of variation can be 
expected within the areas between which there is a weak or intermittent gene flow (Endler, 1977).  
It is known that the formation of the clinal patterns of conchiometric variation can be connected with active and passive dispersal in 
the land snails (Kramarenko, 2014). According to S. Aubry et al. (2006), active dispersal in the land snails is not as limited as 
previously thought. The colonization of Provence (France) by the land snail Xeropicta derbentina (Krynicki 1836) occurred by 
stratified diffusion, where short-range active dispersal occurs side by side with long-range passive dispersal. Passive dispersal via 
human activities is the main determinant of X. derbentina distribution within the landscape. 
On the other hand, breaking of the clinal pattern of variation in shell characters, when considering the fine scale, it is associated 
with the peculiarities of the spatial distribution of individuals and/or groups within population. In this case, a weak gene flow 
between individual subpopulations (especially, spatially distant) can lead to the formation of a morphological “area effect”, similar to 
what has been described earlier for the shell colour and banding polymorphism (Cain & Currey, 1963), as well as for allozyme 
polymorphism (Ochman et al., 1983). This pattern of the conchiometric variation in a micro-geographical scale (in the absence of 
clear differences between individual sites within continuous populations) does not necessarily reflect genetic subdivision between 
groups of the land snails that differ in terms of the shell shape and shell size. It can be a simple manifestation of the phenotypic 
plasticity of morphological traits, which is based on the polygenic inheritance and relatively high level of heritability. 
On the other hand, numerous authors note the high plasticity of the conchiometric traits of the land snails, which, first of all, is 
reflected in the inverse relationship between shell size and population density (Dan & Bailey, 1982; Baur, 1988; Perry & Arthur, 

1991; Anderson et al., 2007). Thus, on the micro-geographical scale, a number of ecology and demographic characteristics of 
species are involved in the formation of patterns of the land snail conchiometric variation, which form a complex set of cause-effect 
relationships against the background of fluctuations of environmental factors. 
 

Conclusion 

We registered a high level of the intrapopulation variation of the land snail C. vindobonensis within a continuous population 
(metapopulation). About 80% of the total variation of the variance-covariance matrix was explained by two Principal Components 
(PC1 and PC2). The PC1 was characterized by high positive factor loadings and can be interpreted as “shell size dimension” and the 
PC2 can be interpreted as “shell globularity”. We have noted two spatial arrangement patterns in intrapopulation variantion, which 
are clinal and chaotic. We supposed that number of ecology and demographic species characteristics caused the land snail 
conchiometric variation at the micro-geographical scale. 
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