Ukrainian Journal of Ecology

Ukrainian Journal of Ecology, 2025, 15(3), 7-9, doi: 10.15421/2025_616

Opinion

The role of pollinators in maintaining agricultural productivity in Ukraine

Mattos Strindberg*

Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA *Corresponding author E-mail: trindberg.mattos@ers.edu

Received: 03 May, 2025, Manuscript No: UJE-25-170775, **Editor assigned:** 05 May, 2025, PreQC No: P-170775, **Reviewed:** 16 May, 2025, QC No: Q-170775, **Revised:** 23 May, 2025, Manuscript No: R-170775, **Published:** 31 May, 2025

Pollinators are indispensable contributors to global food security, biodiversity conservation, and ecosystem stability. In Ukraine, a country with vast agricultural landscapes and a strong dependence on crop production, pollinators-especially honeybees, wild bees, butterflies, moths, flies, and other insects—play a pivotal role in sustaining agricultural productivity. Approximately one-third of Ukraine's major crops, including sunflower, rapeseed, fruits, vegetables, and forage plants, rely to varying degrees on animal pollination. However, pollinator populations in Ukraine face mounting pressures from habitat loss, pesticide use, monoculture farming, climate change, and emerging diseases, which threaten both ecological resilience and food production. This article explores the ecological and economic significance of pollinators in Ukrainian agriculture, examines the key stressors affecting their populations, and highlights agroecological and policy measures that can safeguard pollinator services. By integrating biodiversity-friendly farming practices, strengthening conservation strategies, and fostering farmer-pollinator partnerships, Ukraine can secure sustainable agricultural productivity while contributing to global food resilience.

Keywords: Pollinators, Ukraine, Agricultural productivity, Honeybees, Wild bees, Biodiversity, Ecosystem services, Sunflower, Pollinator decline, Agroecology.

Introduction

Ukraine's diverse ecosystems host a rich community of pollinators, including managed honeybees, bumblebees, solitary bees, hoverflies, butterflies, moths, beetles, and even some bird and bat species in localized habitats. Among these, honeybees are the most economically significant, not only for crop pollination but also for honey and wax production. Wild pollinators, however, contribute critical services that complement managed bees by enhancing pollination efficiency and crop resilience, particularly in heterogeneous landscapes. Pollinators underpin the productivity of Ukraine's high-value crops. Sunflower, the nation's signature crop and primary export commodity, shows yield increases of up to 40% when pollinated by bees. Similarly, rapeseed, apples, pears, cherries, cucumbers, melons, and buckwheat benefit significantly from insect pollination (Konrad R, et al. 2009). The quality of fruits and seeds, measured by size, uniformity, and nutritional content, also improves with adequate pollinator visitation. Beyond agriculture, pollinators support biodiversity by ensuring the reproduction of wild plants that form the basis of food webs, soil stabilization, and ecosystem resilience.

Pollinators underpin the productivity of Ukraine's high-value crops. Sunflower, the nation's signature crop and primary export commodity, shows yield increases of up to 40% when pollinated by bees. Similarly, rapeseed, apples, pears, cherries, cucumbers, melons, and buckwheat benefit significantly from insect pollination. The quality of fruits and seeds, measured by size, uniformity, and nutritional content, also improves with adequate pollinator visitation. Beyond agriculture, pollinators support biodiversity by ensuring the reproduction of wild plants that form the basis of food webs, soil stabilization, and ecosystem resilience.

Description

The economic contribution of pollinators to Ukrainian agriculture is substantial. In Ukraine, sunflower and rapeseed alone account for significant portions of export revenue, with pollinators enhancing yield and oil content. Fruits and vegetables, which rely on pollinators for commercial quality, generate additional income streams for farmers and contribute to rural livelihoods. Beekeeping, a traditional practice across Ukrainian villages, further strengthens rural economies. Ukraine ranks among the world's top honey producers, with exports reaching markets across the EU and beyond (Ramanaidu K, et al. 2013). Thus, pollinator services extend far beyond ecological benefits, forming an economic backbone for agricultural and rural development.

Pollinator conservation requires supportive policies and strong community engagement. The European Union's ban on neonicotinoids highlights regulatory progress, and as Ukraine strengthens integration with EU standards, adopting pollinator-friendly regulations becomes critical. Incentives such as payments for ecosystem services, subsidies for organic farming, and support for agroecological practices can encourage farmers to integrate conservation measures (Mommaerts V, et al. 2009). Community awareness campaigns play a vital role in promoting pollinator-friendly behavior, such as planting flowering gardens, reducing pesticide use in backyards, and supporting local beekeepers. Citizen science initiatives, where farmers and schoolchildren monitor pollinator activity, enhance public engagement while generating valuable data. Building partnerships between farmers, beekeepers, scientists, and policymakers ensures collaborative approaches that safeguard both agricultural productivity and biodiversity. Pollinator conservation is not only an ecological imperative but also a strategic necessity for Ukraine's agricultural sector. As global markets increasingly prioritize sustainability and eco-certification, pollinator-friendly agriculture enhances competitiveness. Moreover, maintaining pollinator diversity strengthens resilience to climate shocks and reduces dependency on external inputs. By positioning itself as a leader in sustainable farming, Ukraine can align agricultural productivity with ecological stewardship, ensuring food security while protecting biodiversity for future generations (Mommaerts V, et al. 2010).

Establishing wildflower strips, hedgerows, and fallow field margins increases floral diversity and continuity of nectar and pollen. These habitats also provide nesting sites and shelter for wild pollinators. Crop rotation, intercropping, and agroforestry enhance ecological heterogeneity, supporting pollinator diversity while improving soil fertility and resilience. Integrated pest management (IPM) reduces reliance on pesticides through biological control, crop rotation, and precision spraying. Encouraging organic and low-input farming systems further safeguards pollinator health. Strengthening apiculture with disease management, genetic diversity programs, and pollinator-friendly hive placements enhances managed pollination services. Training farmers and beekeepers to collaborate reduces conflicts over pesticide use (Tschoeke PH, et al. 2019). Planting climate-resilient crop varieties, ensuring habitat connectivity, and maintaining landscape diversity help pollinators adapt to changing conditions.

Conclusion

Pollinators are the unsung heroes of Ukrainian agriculture, silently enabling the productivity of crops that feed populations and drive economic growth. Their ecological services sustain sunflowers, rapeseed, fruits, vegetables, and forage plants that define Ukraine's agricultural identity and export strength. Yet, pollinator populations face unprecedented threats from pesticides, monocultures, habitat loss, climate change, and diseases. Without urgent intervention, declines in pollinators could undermine agricultural productivity, rural livelihoods, and ecological stability. Agroecological innovations, coupled with supportive policies and community engagement, provide a pathway forward. By restoring habitats, diversifying cropping systems, reducing chemical dependency, and fostering partnerships between farmers and beekeepers, Ukraine can safeguard pollinator services. Policy reforms aligned with EU sustainability standards and climate adaptation strategies further strengthen resilience. Ultimately, protecting pollinators is not merely an environmental goal but a national agricultural priority. Ensuring their survival guarantees the productivity of Ukraine's farmlands, the health of its ecosystems, and the wellbeing of its people. In recognizing the central role of pollinators, Ukraine can chart a sustainable agricultural future that harmonizes productivity with biodiversity.

Acknowledgement

None.

Conflict of Interest

The authors declare no conflict of interest.

References

Konrad, R., Connor, M., Ferry, N., Gatehouse, A. M., Babendreier, D. (2009). Impact of transgenic oilseed rape expressing oryzacystatin-1 (OC-1) and of insecticidal proteins on longevity and digestive enzymes of the solitary bee *Osmia bicornis*. Journal of Insect Physiology 55: 305-313.

Ramanaidu, K., Cutler, G. C. (2013). Different toxic and hormetic responses of *Bombus impatiens* to *Beauveria bassiana*, *Bacillus subtilis* and spirotetramat. Pest Management Science 69: 949-954.

Mommaerts, V., Sterk, G., Hoffmann, L., Smagghe, G. (2009). A laboratory evaluation to determine the compatibility of microbiological control agents with the pollinator *Bombus terrestris*. Pest Management Science 65: 949-955.

Mommaerts, V., Jans, K., Smagghe, G. (2010). Impact of *Bacillus thuringiensis* strains on survival, reproduction and foraging behaviour in bumblebees (*Bombus terrestris*). Pest Management Science 66: 520-525.

Tschoeke, P. H., Oliveira, E. E., Dalcin, M. S., Silveira-Tschoeke, M. C. A., Sarmento, R. A., Santos, G. R. (2019). Botanical and synthetic pesticides alter the flower visitation rates of pollinator bees in Neotropical melon fields. Environmental Pollution 251: 591-599.

Citation:

Strindberg, M., (2025). The role of pollinators in maintaining agricultural productivity in Ukraine. *Ukrainian Journal of Ecology.* 15:7-9.

This work is licensed under a Creative Commons Attribution 40 License