Accumulation Of Microelements By Different Invertebrate Trophic Groups On Wasted Lands

Abstract

O. A. Didur, Yu. L. Kulbachko, V. Y. Gasso

The problem of transformation of natural landscapes resulted from the negative technogenic impact is highlighted. It is shown that mining enterprises are powerful anthropo-technical sources of organic and inorganic toxicants entering the environment. Their wastes pollute all components of the ecosystems and negatively influence human health by increasing a risk of disease. The nature of the accumulation of trace elements (Fe, Cu, Zn, Ni, Cd, and Pb) by invertebrate animals of various functional groups under conditions of anthropo-technogenic pressure was studied. The sample plots were located on self-overgrowing sites with ruderal vegetation located in the immediate vicinity of the Mangan ore-dressing and processing enterprise (Dnipropetrovsk region). It is quite naturally that among the studied biogenic microelements (Fe, Cu, Zn and Ni), the phyto-, zoo-, and saprophages in the investigated zone of technogenic pollution most actively accumulate Fe: 22758, 17516 and 18884 mg/kg dry weight on average, respectively. There are significant differences (p ≤ 0.05) in the content of studied microelements between saprophages and phytophages. The saprophages accumulate such trace metals as Mn, Cu, Zn and Cd in high quantities, but Ni and Pb – in smaller ones. The saprophagous functional group of invertebrates is an active agent of detritogenesis, in the conditions of modern nature management it acts as a powerful element of ecosystem engineering (habitat transformation), the main ecological role of which is to modify the habitat of other soil biota. In addition, the saprophages fulfil their concentrating geochemical function. They actively participate in the most important soil biochemical process: the formation of humus, the migration of microelements along trophic chains, the biological cycle in general, and provide such supporting ecosystem services as increasing soil fertility and nutrient cycling.

<

Share this article