Adaptation to ex vitro conditions of Stevia rebaudiana (Bertoni) Hemsl. regenerants


L.P. Khlebova, A. Orazov, A.M. Titova, A.V. Pirogova

Stevia rebaudiana (Bertoni) Hemsl. belongs to Asteraceae family and is of great importance for pharmaceutical and food industries. Stevioside obtained from the leaves of this plant is regarded as a valuable natural sweetener. Low seed fertility is one of the most important problems in stevia production. It multiplies almost exclusively in a vegetative way. Plant tissue culture is an efficient method for mass propagation of S. rebaudiana. We studied the effect of various concentrations of auxins on rooting stevia shoot cuttings under in vitro conditions. We found that adding 0.6-1.0 mg l-1 IBA or 0.2 mg l-1 IAA to the В5 medium is effective forrooting the shoot fragments of this species. The regenerants were adapted to ex vitro conditions for 3 weeks on a hydroponic setup filled with a solution of mineral salts according to the quarter-strength Murashige and Skoog (MS) basal medium modified by the content of KH2PO4 and NH4NO3. Using a triple concentration of KH2PO4 (510 mg l-1) during the first week of adaptation and a fullconcentration of NH4NO3 (1650 mg l-1) over the next 2 weeks ensures 100% acclimatization of stevia regenerants to ex vitro conditions. The replacement of agar in the nutrient medium with a perlite-vermiculite mixture in the ratio of 1 : 3 stimulated the transition of regenerants to the photomyxotrophic type of nutrition. The use of a porous substrate provided a decrease in humidity inside the culture vessels, which led to forming both leaves with well-functioning stomata and a branched root system with root hairs. The stevia regenerants propagated in vitro on a porous substrate did not require special conditions for the ex vitro acclimatization. The yield of surviving plants in the greenhouse was 100%.
Key words: Stevia rebaudiana Bertoni; Natural sweetener; In vitro propagation; Auxin; Rooting; Acclimatization; Porous substrate; Photomyxotrophic micropropagation
Ahmed, M. B., Salahin, M., Karim, R., Razvy, M. A., Hannan, M. M., Sultana, R., Hossain, M., & Islam, R. (2007). An efficient method for in vitro clonal propagation of a newly introduced sweetener plant (Stevia rebaudiana Bertoni) in Bangladesh. American-Eurasian Journal of Science and Research, 2, 121-125.
Barupa, M., Kataria, V., & Shekhawat, N. S. (2018). In vitro growth profile and comparative leaf anatomy of the C3–C4 intermediate plant Mollugo nudicaulis Lam. In Vitro Cellular & Developmental Biology – Plant.
Bhingradiya, V., Mankad, A., Patel, R., & Mathur, Sh. (2016) In vitro shoot multiplication of Stevia rebaudiana (Bert.) through plant tissue culture Int. J. Adv. Res., 4(11), 2300-2307.
Brandle, J. E., & Telmer, P. G. (2007). Steviol glycoside biosynthesis. Phytochemistry, 68, 1855-1863.
Chatsudthipong, V., & Muanprasat, C. (2009). Stevioside and related compounds: Therapeutic benefits beyond sweetness. Pharmacology & Therapeutics, 121, 41-54.
Debnath, M. (2008). Clonal propagation and antimicrobial activity of an endemic medicinal plant Stevia rebaudiana. Journal of Medicinal Plant Research, 2, 45-51.
Emara, H. A., Nower, A. A., Hamza, E. M., & El Shaib, F. (2018). Evaluation of photomixotrophic technique and several carbohydrate sources as affecting banana micropropagation. Int. J. Curr. Microbiol. App. Sci, 7(10), 788-804.
Frederico, A. P., Ruas, P. M., Marin-Morales, M. A., Fuas, C. F., & Nakajima, J. N. (1996). Chromosome studies in some Stevia Cav. (Compositae) species from Southern Brazil. Brazilian Journal of Genetics, 19, 605-609.
Galdina, T. E. (2015). Development of the complex technology of cultivation of Stevia rebaudiana (Bertoni) Hemsl. in the conditions of Central Black Earth Region. Science Almanac, 8(10), 1141-1143. (In Russian)
Gantait, S., Das, A., & Mandal, N. (2014). Stevia: a comprehensive review on ethnopharmacological properties and in vitro regeneration. Sugar Tech.
Ghaheri, M., Kahrizi, D., & Bahrami, Gh. (2017). Effect of mannitol on some morphological characteristics of in vitro Stevia rebaudiana Bertoni. Biharean biologist, 11(2), 94-97.
Ghorbani, T., Kahrizi, D., Saeidi, M., & Arji, I. (2017). Effect of sucrose concentrations on Stevia rebaudiana Bertoni tissue culture and gene expression. Cell Mol Biol (Noisy le Grand), 63, 8, 32-36.
Hoang, N. N., Kitaya, Yo., Shibuya, T., & Endo R. (2019). Development of an in vitro hydroponic culture system for wasabi nursery plant production – Effects of nutrient concentration and supporting material on plantlet growth. Scientia Horticulturae, 245, 237-243.
Huh, Y. S., Lee, J. K., & Nam, S. Y. (2017). Improvement of ex vitro acclimatization of mulberry plantlets by supplement of abscisic acid to the last subculture medium. J Plant Biotechnol, 44(4), 431-437. DOI:
Isah, T. (2015). Adjustments to in vitro culture conditions and associated anomalies in plants. Acta biologica Cracoviensia. Series Botanica, 57/2, 9-28.
Islam, S. A. M. N., & Tareq, S. A. M. (2015). In vitro cloning and stem cutting of stevia (Stevia rebaudiana Bertoni) for mass propagation in Chittagong, Bangladesh. The International Journal of Biotechnology, 4(3), 14-19.
Jain, P., Kachhwaha, S., & Kothari, S. L. (2014). Biotechnology and metabolic engineering of Stevia rebaudiana (Bert.) Bertoni: perspective and possibilities. Int. J. LifeSc. Bt & Pharm. Res., 3, 3, 15-37.
Kaur, R. P. (2015). Photoautotrophic micropropagation an emerging new vista in micropropagation – A review. Agricultural Reviews, 36(3), 198-207.
Kononova, Ye. A., Krivenko, A. A., & Chukhlebova, N. S. (2012). Induction of flowering and seed production of di- and tetraploid stevia varieties in Leached Black Soil of the Central Ciscaucasia. Nauchnyi zhurnal KubGAU (Scientific Journal of the Kuban State Agrarian University), 76(02). (In Russian)
Kovylyaeva, G. I., Bakaleinik, G. A., Strobykina, I. Y., Gubskaya, V. I., Sharipova, R. R., Al’Fonsov, V. A., Kataev, V. E., & Tolstikov, A. G. (2007). Glycosides from Stevia rebaudiana. Chemistry of Natural Compounds, 43, 1, 81-85.
Kozai, T. (2010). Photoautotrophic micropropagation – environmental control for promoting photosynthesis. Prop. Ornam. Plants, 10, 188-204.
Krisantini, & Wiendi N. M. (2018). Photoautotrophic system: A review and potential applications in plant micro propagation. Journal of Tropical Crop Science, 5, 2, 73-77.
Kumar, R. (2013). Seed germination of Stevia rebaudiana influenced by various potting media. Octa Journal Biosciences, 1, 143-146. Kustova, O. K. (2013). Biomorphologic characteristics of Stevia rebaudiana (BertonI) Hemsl. in generative age state. Industrial botany, 13, 252-258. (In Russian)
Madan, S., Ahmad, S., Singh, G. N., Kohli, K., Kumar, Y., Singh, R., & Garg, M. (2010). Stevia rebaudiana (Bert.) Bertoni – A review. Indian Journal of Natural Products and Resources, 1, 267-286. Martins, J. P. R., Rodrigues, L. C. D. A., Conde, L. T., Gontijo, A. B. P. L., & Falqueto, A. R. (2019). Anatomical and physiological changes of in vitro-propagated Vriesea imperialis (Bromeliaceae) in the function of sucrose and ventilated containers. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 1-13.
Mitra, A., Bhattacharya, P. S., Dey, S., Sawarkar, S. K., & Bhattacharyya, B. C. (1998). Photoautotrophic in vitro culture of Chrysanthemum under CO2 enrichment. Biotechnology Techniques, 12, 335-337.
Nguyen, T. Q., & Kozai T. (2005). Photoautotrophic (sugar-free medium) micropropagation as a new propagation and transplant production systems. Springer, Dordrecht, the Netherlands.
Pande, S. S., & Gupta, P. (2013). Plant tissue culture of Stevia rebaudiana (Bertoni): A review. Journal of Pharmacognosy and Phytotherapy, 5(1), 26-33.
Pérez, L. P., Montesinos, Ye. P., Olmedo, Ju. G., Sánchez, R. R., Montenegro, O. N., Rodriguez, R. B., Ribalta, O. H., Escriba, R. C. R., Daniels, D., & Gómez-Kosky R. (2015). Effects of different culture conditions (photoautotrophic, photomixotrophic) and the auxin indole-butyric acid on the in vitro acclimatization of papaya (Carica papaya L. var. Red Maradol) plants using zeolite as support. Afr. J. Biotechnol., 14(35), 2622-2635. DOI: 10.5897/AJB2015.14814/
Pospisilova, J., Synkova, H., Haisel, D., & Semoradova, S. (2007). Acclimation of plantlets to ex vitro conditions: Effects of air humidity, irradiance, CO2 concentration and abscisic acid (a Riview). Acta Horticulturae, 748. DOI: 10.17660/ActaHortic.2007.748.2
Pospisilova, J., Ticha, I., Kadlecek, P., Haisel, D., & Plzakova, S. (1999). Acclimatization of micropropagated plants to ex vitro conditions. Biologia Plantarum, 42, 481-497.
Pospisilova. J., Synkova, H., Haisel, D., & Batkova, P. (2009). Improvement of ex vitro transfer of tobacco plantlets by addition of abscisic acid to the last subculture. Biologia Plantarum, 53, 617-624.
Sikorskaya, S. V. (2004). Biomorphological traits of stevia (Stevia rebaudiana (Bertoni) Hemsl.) under introduction in conditions of the Central Black Soil Region of Russia. Extended Abstract Cand. Sci. (Biol.) Dissertation, Kursk. (In Russian)
Singh, M., Saharan, V., Dayma, J., Rajpurohit, D., Sen, Y., & Sharma, A. (2017). In vitro propagation of Stevia rebaudiana (Bertoni): An overview. International Journal of Current Microbiology and Applied Sciences, 6, 7, 1010-1022.
Skaria, B. P., Joseph, R., Mathew, G., Malhew, S., & Joy, P. P. (2004). Stevia: A sweet herb. Indian Journal of Arecanut Spices and Medicinal Plants, 6, 24-27.
Smitha, G. R., & Umesha, K. (2011). Vegetative propagation of stevia (Stevia rebaudiana (Bertoni) Hemsl.) through stem cuttings. Journal of Tropical Agriculture, 50, 72-75.
Vahdati, K., Asayesh, Z. M., & Aliniaeifard, S. (2017). Improvement of ex vitro desiccation through elevation of CO2 concentration in the atmosphere of culture vessels during in vitro growth. Hortscience, 52(7), 1006-1012. DOI: 10.21273/HORTSCI11922-17
Verzilina, N. D. (2005). Stevia (Stevia rebaudiana Bertoni) in the Central Black Earth Region (Agrobiological, physiological and biochemical aspects of its cultivation), Dr. Sci. (Agr.) Dissertation, Voronezh. (In Russian)
Xiao, Y., Niu, G., & Kozai T. (2011). Development and application of photoautotrophic micropropagation plant system. Plant Cell Tissue Organ Cult, 105, 49-158.

Share this article