Age-related characteristics of lipid peroxidation and antioxidant defense system of ostriches (Struthio camelus domesticus)

Abstract

V.M. Polishchuk*, S.I. Tsekhmistrenko, S.A. Polishchuk, N.V. Ponomarenko, N.V. Rol, S.V. Cherniuk, O.O. Cherniavskyi, O.А. Kuzmenko, N.M. Prysiazhniuk, V.M. Karaulna, I.O. Lastovska and N.M. Fedoruk

We studied the intensity of lipid peroxidation (LPO) and the status of antioxidant system in blood of 6-60 months ostriches. We proved that specific functioning of the antioxidant system and the accumulation of lipid peroxidation intermediates characterized each period of ostrich life cycle. Thus, the period of puberty was accompanied by intensification of lipid peroxidation in ostrich blood serum and this was confirmed by a significant increase in the amount of TBA-reactive substances. This could be the consequence of the insufficient activity of enzymes of the antioxidant system (catalase, glutathione-S-transferase, glutathione reductase). The egg-laying peak was characterized by the increased body metabolism, which caused the activation of free-radical oxidation. The concentration of lipid hydroperoxides and diene conjugates increased and the TBA-reactive substances did not change significantly. Antioxidant protection of the blood during this period was mainly caused by the significant concentration of ceruloplasmin and reduced glutathione due to the increased activity of glutathione reductase. We supposed that the period of puberty and intensive period of egg laying in ostriches should be referred as the periods of stress of metabolic processes with increased intensity of lipid oxidation, associated with the certain changes in ostrich physiological and functional state.
Keywords: Blood serum; Oxidative stress; Antioxidant; Lipid peroxidation; Antioxidant system enzymes; Ostriches; Struthio camelus domesticus.
References
Alam, M. N., Bristi, N. J., & Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 21(2), 143-152. doi.org/10.1016/j.jsps.2012.05.002.
Al-Khalifa, H., & Al-Naser, A. (2014). Ostrich meat: Production, quality parameters, and nutritional comparison to other types of meats. Journal of Applied Poultry Research, 23(4), 784-790. doi.org/10.3382/japr.2014-00962.
Andreeva, L. I., Kozhemyakin, L. A., & Kishkun, A. A. (1988). Modifikaciya metoda opredeleniya perekisej lipidov v teste s tiobarbiturovoj kislotoj. Laboratornoe delo, 11(41), 41-44. (in Russian).
Bastos, M. S., Del Vesco, A. P., Santana, T. P., Santos, T. S., de Oliveira Junior, G. M., Fernandes, R. P. M., & Gasparino, E. (2017). The role of cinnamon as a modulator of the expression of genes related to antioxidant activity and lipid metabolism of laying quails. PloS one, 12(12), e0189619. doi:10.1371/journal.pone.0189619.
Bejaei, M., & Cheng, K. M. (2014). Effects of pretransport handling stress on physiological and behavioral response of ostriches. Poultry science, 93(5), 1137-1148. doi.org/10.3382/ps.2013-03478.
Beregovij, V. K. (2012). Strausivnictvo yak perspektivna galuz tvarinnictva. Agrosvit, (11), 29-32.
Bityutskyy, V., Tsekhmistrenko, S., Tsekhmistrenko, O., Melnychenko, O., & Kharchyshyn, V. (2019). Effects of Different Dietary Selenium Sources Including Probiotics Mixture on Growth Performance, Feed Utilization and Serum Biochemical Profile of Quails. In Modern Development Paths of Agricultural Production (pp. 623-632). Springer, Cham. https://doi.org/10.1007/978-3-030-14918-5-61.
Brand, T. S., Kritzinger, W. J., van der Merwe, D. A., Muller, A., Hoffman, L. C., & Niemann, G. J. (2018). Feather and skin development of ostriches Struthio camelus. Journal of the South African Veterinary Association, 89(0), e1–e5. doi:10.4102/jsava.v89i0.1556.
Burlaka, A., Tsybulin, O., Sidorik, E., Lukin, S., Polishuk, V., Tsehmistrenko, S., & Yakymenko, I. (2013). Overproduction of free radical species in embryonal cells exposed to low intensity radiofrequency radiation. Experimental oncology, 35(3), 219-225.
Cai, C. H., Zhao, R. X., Wang, P., Wang, J. S., Li, K. X., Zhan, X. A., & Wang, K. Y. (2019). Effects of different stocking densities on growth performance, antioxidant ability, and immunity of finishing broilers. Animal Science Journal, 90(4), 583-588. doi: 10.1111/asj.13148.
Chevari, S., Andyal, T., & Shtrenger, Ya. (1991). Opredelenie antioksidantnyh parametrov krovi i ih diagnosticheskoe znachenie v pozhilom vozraste. Laboratornoe delo, 10, 9-13. (in Russian).
Chevari, S., Chaba, I., & Sekej, J. (1985). Rol superoksiddismutazy v okislitelnyh processah kletki i metod opredeleniya ee v biologicheskih materialah. Laboratornoe delo, 11, 678-680. (in Russian).
Cloete, S. W. P., Engelbrecht, A., Olivier, J. J., & Bunter, K. L. (2008). Deriving a preliminary breeding objective for commercial ostriches: an overview. Australian Journal of Experimental Agriculture, 48(10), 1247-1256.
Del Vesco, A. P., Khatlab, A. S., Goes, E. S., Utsunomiya, K. S., Vieira, J. S., Oliveira Neto, A. R., Gasparino E. (2017). Age-related oxidative stress and antioxidant capacity in heat-stressed broilers. Animal: An International Journal of Animal Bioscience., 11(10), 1783-1790. doi: 10.1017/S1751731117000386.
Fernye, C., Ancsin, Z., Bócsai, A., Balogh, K., Mézes, M., & Erdélyi, M. (2018). Role of glutathione redox system on the T-2 toxin tolerance of pheasant (Phasianus colchicus). Toxicological research, 34(3), 249-257. doi:10.5487/TR.2018.34.3.249.
Fisinin, V. I., Kavtarashvili, A. Sh., & Kolokolnikova, T. N. (2014). Kak borotsya s teplovym stressom pticy?. Pticevodstvo, (6), 2-11. (in Russian).
Forrester, S. J., Kikuchi, D. S., Hernandes, M. S., Xu, Q., & Griendling, K. K. (2018). Reactive oxygen species in metabolic and inflammatory signaling. Circulation research, 122(6), 877-902. doi:10.1161/CIRCRESAHA.117.311401.
García-Giménez, J. L., Romá-Mateo, C., Pérez-Machado, G., Peiró-Chova, L., & Pallardó, F. V. (2017). Role of glutathione in the regulation of epigenetic mechanisms in disease. Free Radical Biology and Medicine, 112, 36-48. doi: 10.1016/j.freeradbiomed.2017.07.008.
Ghasemi, H., & Hajkhodadadi, I. (2019). Metabolic profile and antioxidant status of ostriches receiving water supplemented with essential oil mixture of Zataria multiflora, Mentha piperita, Foeniculum vulgare and Eucalyptus globules. Iranian Journal of Medicinal and Aromatic Plants Research, 35, 1(93). 12-24.
Goryachkovskij, O. M. (1998). Opredelenie urovnya vosstanovlennogo glutationa v eritrocitah krovi. Klinicheskaya biohimiya: Spravochnoe posobie–Odessa: Astroprint, 370-372. (in Russian).
Goth, L. (1991). A simple method for determination of serum catalase activity and revision of reference range. Clinica chimica acta, 196(2-3), 143-151. doi.org/10.1016/0009-8981(91)90067-M.
Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases the first enzymatic step in mercapturic acid formation. Journal of biological Chemistry, 249(22), 7130-7139.
Jóźwik, A., Poławska, E., Zdanowska-Sąsiadek, Ż., Lipińska, P., Kawka, M., Guzek, D., & Strzałkowska, N. (2015). Oxidative stability of ostrich meat related to duration of linseed and lucerne supplementation to the bird's diet. Bulletin of the Veterinary Institute in Pulawy, 59(1), 79-83.
Krylatov, A. V., Maslov, L. N., Voronkov, N. S., Boshchenko, A. A., Popov, S. V., Gomez, L., Wang, H, Jaggi, A. S., & Downey, J. M. (2018). Reactive oxygen species as intracellular signaling molecules in the cardiovascular system. Current cardiology reviews, 14(4), 290-300. doi:10.2174/1573403X14666180702152436.
Magige, F., & Røskaft, E. (2017). Medicinal and commercial uses of ostrich products in Tanzania. Journal of ethnobiology and ethnomedicine, 13(1), 48. doi:10.1186/s13002-017-0176-5.
Mahrose, K., Elsayed, M., Basuony, H., & Gouda, N. (2016). Effects of exposing ostrich eggs to doses of gamma radiation on hatchability, growth performance, and some blood biochemicals of hatched chicks. Environmental Science and Pollution Research, 23(22), 23017-23022. doi:10.1007/s11356-016-7539-7.
Minka, N. S., & Ayo, J. O. (2008). Assessment of the stresses imposed on adult ostriches (Struthio camelus) during handling, loading, transportation and unloading. Veterinary record, 162(26), 846-851.
Morosinotto, C., Rainio, M., Ruuskanen, S., & Korpimäki, E. (2018). Antioxidant Enzyme Activities Vary with Predation Risk and Environmental Conditions in Free-Living Passerine Birds. Physiological and Biochemical Zoology, 91(3), 837-848. doi: 10.1086/697087. Nagorna, L. V. (2013). Ektoparazitofauna u strausivnichih gospodarstvah pivnichno-shidnogo regionu Ukrayini. Agrarnij visnik Prichornomor'ya. Veterinarni nauki, (68), 197-200. (in Ukrainian). Ravin, H. A. (1961). Secretion of digestive enzyme by pancreas with minimal transit tisue. Journal of Laboratory and Clinical Medicine, 58, 161-168. Rehman, Z. U., Meng, C., Sun, Y., Safdar, A., Pasha, R. H., Munir, M., & Ding, C. (2018). Oxidative Stress in Poultry: Lessons from the Viral Infections. Oxidative medicine and cellular longevity, 2018, 5123147. Romanova, L. A., & Stalnaya, I. D. (1977). Metod opredeleniya gidroperekisej lipidov s pomoshyu tiocionata ammoniya. Sovremennye metody v biohimii, 64-66. (in Russian). Roy, J., Galano, J. M., Durand, T., Le Guennec, J. Y., & Lee, J. C. Y. (2017). Physiological role of reactive oxygen species as promoters of natural defenses. The FASEB Journal, 31(9), 3729-3745. doi: 10.1096/fj.201700170R. Ryeznikov, O. G. (2003). Zagalni etichni principi eksperimentiv na tvarinah. Endokrinologiya, 8(1). 142–145. (in Ukrainian). Scanes, C. G. (2016). Biology of stress in poultry with emphasis on glucocorticoids and the heterophil to lymphocyte ratio. Poultry science, 95(9), 2208-2215. doi.org/10.3382/ps/pew137. Stalnaya, I. D. (1977). Metod opredeleniya dienovoj konyugacii nenasyshennyh vysshih zhirnyh kislot. Sovremennye metody v biohimii, 63-64. (in Russian). Surai, P. F., Kochish, I. I., Fisinin, V. I., & Kidd, M. T. (2019). Antioxidant Defence Systems and Oxidative Stress in Poultry Biology: An Update. Antioxidants, 8(7), 235. doi:10.3390/antiox8070235. Tsekhmistrenko, S & Polishchuk, V. (2010). Age-related peculiarities of antioxidant system functioning in the blood of ostriches. Ukrainskiĭ biokhimicheskiĭ zhurnal, 82, 92-97 (in Ukrainian). Tsekhmistrenko, S. I., Bityutskyy, V. S., Tsekhmistrenko, O. S., Polishchuk, V. M., Polishchuk, S. A., Ponomarenko, N. V., Melnychenko, Y. O., & Spivak, M. Y. (2018a). Enzyme-like activity of nanomaterials. Regulatory Mechanisms in Biosystems, 9(3), 469–476. https://doi.org/10.15421/021870. Tsekhmistrenko, O. S., Tsehmistrenko, S. I., Bityutskyy, V. S., Melnichenko, O. M., Oleshko, O. A. (2018b). Biomimetic and antioxidant activity of nano-crystaline cerium dioxide. World of Medicine and Biology, 1(63), 196–201. DOI 10.267254/2079-8334- 2018-1-63-196-201 (In Ukrainian). Vazquez-Galindo, G., de Aluja, A.S, Guerrero-Legarreta, I., Orozco-Gregorio, H., Borderas-Tordesillas, F., Mora-Medina, P., Roldan-Santiago, P., Flores-Peinado, S., Mota-Rojas, D. (2013). Adaptation of ostriches to transport-induced stress: physiometabolic response. Animal Science Journal, 84(4), 350-358. doi: 10.1111/asj.12010. Wan, X. L., Ju, G. Y., Xu, L., Yang, H. M., & Wang, Z. Y. (2019). Dietary selenomethionine increases antioxidant capacity of geese by improving glutathione and thioredoxin systems. Poultry science, 98 (9), 3763–3769. doi.org/10.3382/ps/pez066. Yusupova, L. B. (1989). O povyshenii tochnosti opredeleniya aktivnosti glutationreduktazy eritrocitov. Laboratornoe delo, 4(19-21), 13.(in Russian).

Share this article