Analysis of spatial and temporal dynamics of epizootic process of blackleg in Ukraine

Abstract

P.K. Boiko, V.M. Sokolyuk, O.P. Boiko, V.I. Koziy, A.M. Fedorchenko

The goal of our research was to identify the model and study the features of blackleg epizootic process of cattle in Ukraine. The analysis of official statistical data of state veterinary reports on the incidence of blackleg infection in the territory of Ukraine over the period 1971–2007 were performed. The method of epizootological analysis was used. Ukraine is the territory of permanent existing of epizootic process of blackleg. Its activity has a temporary irregularity with a tendency to decrease, which is explained by the reduction in livestock numbers, starting from the beginning of the 90s, an increase in the use of the blackleg vaccine in the late 1970s. The growth of the epizootic situation in the early 70s and by the mid-80s was due to intensive land reclamation work, which was accompanied by the removal of the spores of the pathogen blackleg on the soil surface. On the other hand, the introduction of veterinary and sanitary plants for the disposal of destructive raw materials in the late 70s reduced the incidence of blackleg. The most intensive epizootic situation was observed in Lviv and Dnipro (epizootic index 0.64), in Volyn (0.68), in Rivne and Kharkiv – 0.8 and 0.88 respectively. The activity of the stationary foci of blackleg is highest during the first four years and amounts to 80.5% of all repeated outbreaks of the disease. Manifestation of the epizootic process of blackleg in Ukraine has a pronounced seasonality, especially in pasture season, which indicates the soil character of this infection. The epizootic process of blackleg of cattle in Ukraine is characterized by constancy, temporal irregularity, pronounced seasonality and sporadic manifestation, slow extinction of its intensity.

Keywords: Blackleg; Soil infections; Epizootic process; Epizootic situation; Cattle

References

Ayele, B., Tigre, W., & Deressa, B. (2016). Epidemiology and financial loss estimation of blackleg on smallholder cattle herders in Kembata Tambaro zone, Southern Ethiopia. Springerplus, 5 (1), 1822. doi: 10.1186%2Fs40064-016-3541-2.

Bagge, E., Lewerin, S.S., & Johansson, K.E. (2009). Detection and identification by PCR of Clostridium chauvoei in clinical isolates, bovine faeces and substrates from biogas plant. Acta Vet Scand., 51, 8. doi: 10.1186/1751-0147-51-8.

Bagge, E., Persson, M., & Johansson, K.E. (2010). Diversity of spore-forming bacteria in cattle manure, slaughterhouse waste and samples from biogas plants. J Appl Microbiol., 109 (5), 1549-1565. doi: 10.1111/j.1365-2672.2010.04790.

Boiko, P.K. (2002). Epizootolohichni aspekty emfizematoznoho karbunkulu v Ukraini. Kharakterystyka statsionarnosti ta periodychnoi povtoriuvanosti epizootychnoho protsesu (tretie povidomlennia). Veterynarna medytsyna Ukrainy, 2, 16–17 (in Ukrainian).

Boiko, P.K. (2009). Epizootychnyi protses ta spetsyfichna profilaktyka emfizematoznoho karbunkulu velykoi rohatoi khudoby. Dysertatsiia … doktora veterynarnykh nauk. K.: NUBiP (in Ukrainian).

Bomko, V., Kropyvka, Yu., Bomko, L., Chernyuk, S., Kropyvka, S., & Gutyj, B. (2018). Effect of mixed ligand complexes of Zinc, Manganese, and Cobalt on the Manganese balance in high-yielding cows during first 100-days lactation. Ukrainian Journal of Ecology, 8 (1), 420–425. doi: 10.15421/2018_230

Borshch, O.O., Gutyj, B.V., Sobolev, O.I., Borshch, O.V., Ruban, S.Yu., Bilkevich, V.V., Dutka, V.R., Chernenko, O.M., Zhelavskyi, M.M., & Nahirniak, T. (2020). Adaptation strategy of different cow genotypes to the voluntary milking system. Ukrainian Journal of Ecology, 10 (1), 145-150. doi: 10.15421/2020_23

Busol, V.O., Boyko, P.K., & Boyko, O.P. (2010). Kharakterystyka postvaktsynalnoho imunitetu u tvaryn, shcheplenykh vaktsynoyu «EMKARVAK». Naukovyi visnyk Lvivskoho natsionalnoho universytetu veterynarnoi medytsyny i biotekhnolohiy im. S.Z. Gzhytskoho, 12 (2), 28–35 (in Ukrainian).

Further outbreaks of blackleg seen across Scotland (2012). Veterinary Record, 171 (20), 495–498. doi: 10.1136/vr.e7202.

Garofolo, G., Galante, D., Serrecchia, L., Buonavoglia, D., & Fasanella, A. (2011). Development of a real time PCR Taqman assay based on the TPI gene for simultaneous identification of Clostridium chauvoei and Clostridium septicum. J Microbiol Methods., 84 (2), 307-311. doi: 10.1016/j.mimet.2010.12.017.

Groseth, P. K., Ersdal, C., Bjelland, A. M., & Stokstad, M. (2011). Large outbreak of blackleg in housed cattle. Vet Rec., 169 (13), 339. doi: 10.1136/vr.d4628.

Grymak, Y., Skoromna, O., Stadnytska, O., Sobolev, O., Gutyj, B., Shalovylo, S., Hachak, Y., Grabovska, O., Bushueva, I., Denys, G., Hudyma, V., Pakholkiv, N., Jarochovich, I., Nahirniak, T., Pavliv, O., Farionik, Т., & Bratyuk, V. (2020). Influence of “Thireomagnile” and “Thyrioton” preparations on the antioxidant status of pregnant cows. Ukrainian Journal of Ecology, 10 (1), 122-126. doi: 10.15421/2020_19

Gutyj, B., Grymak, Y., Drach, M., Bilyk, O., Matsjuk, O., Magrelo, N., Zmiya, M., & Katsaraba, O. (2017). The impact of endogenous intoxication on biochemical indicators of blood of pregnant cows. Regulatory Mechanisms in Biosystems, 8 (3), 438–443. doi: 10.15421/021768

Gutyj, B., Grymak, Y., Hunchak, V., Mysak, A., Nazaruk, N., Brezvyn, O., Hariv, I., Shcherbatyy, A., Semeniv, B., Bushueva, I., Parchenko, V., & Kaplaushenko, A. (2018). Preclinical searches of the preparation Thireomagnile. Ukrainian Journal of Ecology, 8 (1), 688–695. doi: 10.15421/2018_267

Gutyj, B., Nazaruk, N., Levkivska, A., Shcherbatyj, A., Sobolev, A., Vavrysevych, J., Hachak, Y., Bilyk, O., Vishchur, V., & Guta, Z. (2017). The influence of nitrate and cadmium load on protein and nitric metabolism in young cattle. Ukrainian Journal of Ecology, 7 (2), 9–13

Gutyj, B., Stybel, V., Darmohray, L., Lavryshyn, Y., Turko, I., Hachak, Y., Shcherbatyy, A., Bushueva, I., Parchenko, V., Kaplaushenko, A., & Krushelnytska, O. (2017). Prooxidant-antioxidant balance in the organism of bulls (young cattle) after using cadmium load. Ukrainian Journal of Ecology, 7 (4), 589–596

Hang'ombe, B.M., Isogai, E., Lungu, J., Mubita, C., Nambota, A., Kirisawa, R., Kimura, K., & Isogai, H. (2000). Detection and characterization of Clostridium species in soil of Zambia. Comp Immunol Microbiol Infect Dis., 23 (4), 277-284. doi: 10.1016/s0147-9571 (99)00078-8.

Harwood, D.G., Higgins, R.J., & Aggett, D.J. (2007). Outbreak of intestinal and lingual Clostridium chauvoei infection in two-year-old Friesian heifers. Veterinary Record, 161 (9), 307-308. doi: 10.1136/vr.161.9.307.

Idrees, M.A., Younus, M., Farooqi, S.H., & Khan, A.U. (2018). Blackleg in cattle: Current understanding and future research perspectives - A review. Microb Pathog., 120, 176-180. doi: 10.1016/j.micpath.2018.04.047.

Kagan, F.I., & Kolesova, A.I. (1963). Kontsentrirovannaya vaktsina protiv emfizematoznogo karbunkula. Biologicheskiye i khimioterapevticheskiye veterinarnyye preparaty. Moskva, Selkhozgiz, 195–203 (in Russian).

Kovalenko, A.M., Tkachev, A.V., Tkacheva, O.L., Gutyj, B.V., Prystupa, O.I., Kukhtyn, M.D., Dutka, V.R., Veres, Ye.M., Dashkovskyy, O.O., Senechyn, V.V., Riy, M.B., & Kotelevych, V.A. (2020). Analgesic effectiveness of new nanosilver drug. Ukrainian Journal of Ecology, 10 (1), 300-306. doi: 10.15421/2020_47

Kulyaba, O., Stybel, V., Gutyj, B., Turko, I., Peleno, R., Turko, Ya., Golovach, P., Vishchur, V., Prijma, O., Mazur, I., Dutka, V., Todoriuk, V., Golub, O. Dmytriv, O., & Oseredchuk, R. (2019). Effect of experimental fascioliasis on the protein synthesis function of cow liver. Ukrainian Journal of Ecology, 9 (4), 612-615

Lange, M., Neubauer, H., & Seyboldt, C. (2010). Development and validation of a multiplex real-time PCR for detection of Clostridium chauvoei and Clostridium septicum. Mol Cell Probes, 24 (4), 204-210. doi: 10.1016/j.mcp.2010. 03.003.

Nampanya, S., Khounsy, S., Dhand, N.K., Bush, R.D., & Windsor, P.A. (2019). Financial impact of an outbreak of clinically diagnosed blackleg - a case study from Lao PDR. Vet Med Sci., 5 (2), 118-128. doi: 10.1002/vms3.152.

Nicholson, P., Furrer, J., Hässig, M., Strauss, C., Heller, M., Braga-Lagache, S., & Frey, J. (2019). Production of neutralizing antibodies against the secreted Clostridium chauvoei toxin A (CctA) upon blackleg vaccination. Anaerobe, 56, 78-87. doi: 10.1016/j.anaerobe.2019.02.011.

Pires, P.S., Santos, R.L., da Paixão, T.A., de Oliveira Bernardes, L.C., de Macêdo, A.A., Gonçalves, L.A., de Oliveira Júnior, C.A., Silva, R.O., & Lobato, F.C. (2017). Intracellular survival of Clostridium chauvoei in bovine macrophages. Vet Microbiol, 199, 1-7. doi: 10.1016/j.vetmic.2016.11.027.

Rychener, L., Inalbon, S., Djordjevic, S.P., Chowdhury, P.R., Ziech, R.E., De Vargas, A.C., Frey, J., & Falquet, L. (2017). Clostridium chauvoei, an Evolutionary Dead-End Pathogen. Front Microbiol., 9 (8), 1054. doi: 10.3389/fmicb.2017.01054.

Sasaki, Y., Yamamoto, K., Amimoto, K., Kojima, A., Ogikubo, Y., Norimatsu, M., Ogata, H., & Tamura, Y. (2001). Amplification of the 16S-23S rDNA spacer region for rapid detection of Clostridium chauvoei and Clostridium septicum. Res Vet Sci., 71 (3), 227-229. doi: 10.1053/rvsc.2001.0495.

Sasaki, Y., Yamamoto, K., Kojima, A., Tetsuka, Y., Norimatsu, M., & Tamura, Y. (2000). Rapid and direct detection of clostridium chauvoei by PCR of the 16S-23S rDNA spacer region and partial 23S rDNA sequences. J Vet Med Sci., 62 (12), 1275-1281. doi: 10.1292/jvms.62.1275.

Sathish, S., & Swaminathan, K. (2008). Molecular characterization of the diversity of Clostridium chauvoei isolates collected from two bovine slaughterhouses: analysis of cross-contamination. Anaerobe, 14 (3), 190-199. doi: 10.1016/j.anaerobe.2008.01.004.

Slivinska, L., Fedorovych, V., Gutyj, B., Lychuk, M., Shcherbatyy, A., Gudyma, T., Chernushkin, B., & Fedorovych, N. (2018). The occurrence of osteodystrophy in cows with chronic micronutrients deficiency. Ukrainian Journal of Ecology, 8 (2), 24–32. doi: 10.15421/2018_305

Slivinska, L.G., Shcherbatyy, A.R., Lukashchuk, B.O., Zinko, H.O., Gutyj, B.V., Lychuk, M.G., Chernushkin, B.O., Leno, M.I., Prystupa, O.I., Leskiv, K.Y., Slepokura, O.I., Sobolev, O.I., Shkromada, O.I., Kysterna, O.S., & Мusiienko, O.V. (2019). Correction of indicators of erythrocytopoesis and microelement blood levels in cows under conditions of technogenic pollution. Ukrainian Journal of Ecology, 9 (2), 127-135

Tretiakov, A.D. (1973). Nastavleniye po primeneniyu kontsentrirovannoy gidrookis'alyuminiyevoy formolvaktsiny protiv emfizematoznogo karbunkula krupnogo rogatogo skota i ovets. Veterinarnoye zakonodatelstvo. Moskva, Agropromizdat, 1, 222–223 (in Russian).

Useh, N.M. et al. (2006). Blackleg in ruminants. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 1, 1-8. doi: 10.1079/PAVSNNR20061040.

Useh, N.M., Ibrahim, N.D., Nok, A.J., & Esievo, K.A. (2006). Relationship between outbreaks of blackleg in cattle and annual rainfall in Zaria, Nigeria. Vet Rec., 158 (3), 100-101. doi: 10.1136/vr.158.3.100.

Uzal, F.A. (2012). Evidence-based medicine concerning efficacy of vaccination against Clostridium chauvoei infection in cattle. Vet Clin North Am Food Anim Pract., 28 (1), 71-77. doi: 10.1016/j.cvfa.2011.12.006.

Uzal, F.A., Hugenholtz, P., Blackall, L.L., Petray, S., Moss, S., Assis, R.A., Fernandez M.M., & Carloni, G. (2003). PCR detection of Clostridium chauvoei in pure cultures and in formalin-fixed, paraffin-embedded tissues. Vet Microbiol., 91 (2-3), 239-248. doi: 10.1016/s0378-1135 (02)00291-2.

Warning on blackleg incidence in Scotland (2012). Veterinary Record, 171 (8), 186. doi: 10.1136/vr.e5628.

Wolf, R., Hiesel, J., Kuchling, S., Deutz, A., Kastelic, J., Barkema, H.W., & Wagner, P. (2017). Spatial-temporal cluster analysis of fatal Clostridium chauvoei cases among cattle in Styria, Austria between 1986 and 2013. Prev Vet Med., 138, 134-138. doi: 10.1016/j.prevetmed.2017.01.019.

Zertsalov, S. (1891). Simptomaticheskiy karbunkul u krupnogo rogatogo skota. Veterinarnyy vestnik, 1 (4), 12–15 (in Russian).

Share this article