Antimicrobial action of a bacterial consortium containing strains of the genus Bacillus

Abstract

A.N. Irkitova, A.V. Grebenshchikova

Multicomponent biopreparations containing several symbiotic strains of microorganisms are gaining increasing popularity due to their heightened efficiency and improved biotechnological properties. In this connection, the purpose of this research was to study the antimicrobial action of a bacterial consortium consisting of 2 strains of Bacillus subtilis, as well as natural strains of the genus Bacillus. Strain of Escherichia coli was used as a test culture. We used methods of delayed (perpendicular bands, agar blocks, agar wells) and direct (co-incubating in a liquid medium) antagonism to achieve this aim. As a result, the antagonistic effect of the microbial composition against Escherichia coli was improved in compared to the single action of each strains included in the consortium. In agar media, the largest increase of the radius of zone of growth inhibition was noted from 6.65 mm to 10.67 mm, i.e. by 60.5%, and in liquid media - an improvement in the growth blocking index from 0.188 to 0.009, i.e., by 95.2%.

Keywords: Bacterial consortium; microbial antagonism; Bacillus subtilis; bacterial preparations

References:
Agarwal, M., Dheeman, S., Dubey, R. C., Kumar, P., Maheshwari, D. K., & Bajpai, V. K. (2017). Differential antagonistic responses of Bacillus pumilus MSUA3 against Rhizoctonia solani and Fusarium oxysporum causing fungal diseases in Fagopyrum esculentum Moench. Microbiological Research, 205, 40-47. doi: 10.1016/j.micres.2017.08.012
Artyukhova, S. I., & Tolstoguzov, T. T. (2014). Biotechnology of biological products "Healing - 1". Bulletin of Voronezh State University of Engineering Technologies, 4, 183-186.
Baruzzi, F., Quintieri, L., Morea, M., & Caputo, L. (2011). Antimicrobial compounds produced by Bacillus spp. and applications in food. Science against microbial pathogens: communicating current research and technological advances, 2, 1102-1111.
Bernardeau, M., Lehtinen, M. J., Forssten, S. D., & Nurminen, P. (2017). Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality. Journal of Food Science and Technology, 54(8), 2570-2584. doi: 10.1007/s13197-017-2688-3
Burruano, S., Alfonzo, A., Conigliaro, G., Torta, L., & Moschetti, G. (2009). Antagonism of Bacillus subtilis strain AG1 against vine wood fungal pathogens. Phytopathol. Mediterr, 48, 155-158. doi: 10.14601/Phytopathol_Mediterr-2886
Dischinger, J., Josten, M., Szekat, C., Sahl, H-S., & Bierbaum, G. (2009). Production of the Novel Two-Peptide Lantibiotic Lichenicidin by Bacillus licheniformis DSM 13. PLoS One, 4(8), e6788. doi: 10.1371/journal.pone.0006788
Djenane, Z., Nateche, F., Amziane, M., Gomis-Cebolla, J., El-Aichar, F., Khorf, H., & Ferre, J. (2017). Assessment of the Antimicrobial Activity and the Entomocidal Potential of Bacillus thuringiensis Isolates from Algeria. Toxins, 9(4), 139. doi: 10.3390/toxins9040139
Feichtmayer, J., Deng, L., & Griebler, C. (2017). Antagonistic Microbial Interactions: Contributions and Potential Applications for Controlling Pathogens in the Aquatic Systems. Frontiers in Microbiology, 8, 2192. doi: 10.3389/fmicb.2017.02192
Hibbing, M. E., Fuqua, C., Parsek, M. R., & Peterson, S. B. (2010). Bacterial competition: surviving and thriving in the microbial jungle. Nature Reviews Microbiology, 8(1), 15-25. doi: 10.1038/nrmicro2259
Irkitova, A. N., Grebenshchikova, A. V., & Matsyura, A. V. (2018). Antagonistic activity of Bacillus subtilis strains isolated from various sources. Ukrainian Journal of Ecology, 8(2), 354-364. doi: 10.15421/2018_354
Irkitova, A. N., Kagan, Y. R. (2012). Comparative analysis of methods for determining the antagonistic activity of lactic acid bacteria. News of Altai State University, 3, 41-44.
Jabbari, S., Heap, J. T., & King, J. R. (2011). Mathematical modelling of the sporulation-initiation network in Bacillus subtilis revealing the dual role of the putative quorum-sensing signal molecule PhrA. Bulletin of Mathematical Biology, 73(1), 181-211. doi: 10.1007/s11538-010-9530-7
Kantas, D., Papatsiros, V. G., Tassis, P. D., Giavasis, I., Bouki, P., & Tzika, E. D. (2015). A feed additive containing Bacillus toyonensis (Toyocerin(®) ) protects against enteric pathogens in postweaning piglets. Journal of Applied Microbiology, 118(3), 727-738. doi: 10.1111/jam.12729
Lazovskaya, A. L., Grushina, N. V., Vorobyeva, Z. G., Sliniya, K. N., Kulchitskaya, M. A., & Vasilyeva, E. A. (2010). Antagonistic activity of spore probiotics and the effect on drug susceptibility of Mycobacterium tuberculosis. Bulletin of RUDN. Series: Medicine, 1, 18-24.
Lazovskaya, A. L., Vorobieva, Z. G., Slinina, K. N., & Kulchitskaya, M. A. (2013). Spore probiotics in agriculture. Successes of modern biology, 133(2), 133-140.
Maiyappan, S., Amalraj, E. L. D., Santhosh, A., & Peter, A. J. (2010). Isolation, Evaluation and Formulation of Selected Microbial Consortia for Sustainable Agriculture. Journal of Biofertilizers & Biopesticides, 2(2), 109. doi: 10.4172/2155-6202.1000109
Maxim, E. A. (2014). The use of the complex of probiotics in fish farming. Collection of scientific works of the North Caucasus Research Institute of Livestock, 3(2), 197-201.
Nigris, S., Baldan, E., Tondello, A., Zanella, F., Vitulo, N., Favaro, G., Guidolin, V., Bordin, N., Telatin, A., Barizza, E., Marcato, S., Zottini, M., Squartini, A., Valle, G., & Baldan, B. (2018). Biocontrol traits of Bacillus licheniformis GL174, a culturable endophyte of Vitis vinifera cv. Glera. BMC Microbiology, 18, 133. doi: 10.1186/s12866-018-1306-5
Roos, T. B., de Moraes, C. M., Sturbelle, R. T., Dummer, L. A., Fischer, G., & Leite, F. P. L. (2018). Probiotics Bacillus toyonensis and Saccharomyces boulardii improve the vaccine immune response to Bovine herpesvirus type 5 in Sheep. Research in Veterinary Science, 117, 260-265. doi: 10.1016/j.rvsc.2017.12.022
Sanchis, V., & Bourguet, D. (2008). Bacillus thuringiensis: Applications in Agriculture and Insect Resistance Management. A Review. Agronomy for Sustainable Development, 28(1), 11-20.
Sorokulova, I. (2013). Modern Status and Perspectives of Bacillus Bacteria as Probiotics. J. Prob. Health, 1(4), e106. doi: 10.4172/2329-8901.1000e106
Sverchkova, N., & Kolomiets, E. (2014). In Search of an Alternative to Veterinary and Feed Antibiotics. Science and Innovations, 8 (138), 21-24.
Thakkara, A., & Sarafa, M. (2015). Development of microbial consortia as a biocontrol agent for effective management of fungal diseases in Glycine max L. Archives of Phytopathology and Plant Protection, 48, 459-474. doi: 10.1080/03235408.2014.893638
Truong, H., Nguyen, T., Ong, N., Quya, M., Fotedarc, R., Kannikad, K., Unajake, S., & Areechon, N. (2017). Effects of the dietary supplementation of mixed probiotic spores of Bacillus amyloliquefaciens 54A, and Bacillus pumilus 47B on growth, innate immunity and stress responses of striped catfish (Pangasianodon hypophthalmus). Fish & Shellfish Immunology, 60, 391-399. doi: 10.1016/j.fsi.2016.11.016
Tsigarida, E., Boziaris, I. S., & Nychas, G. E. (2003). Bacterial Synergism or Antagonism in a Gel Cassette System. Applied and Environmental Microbiology, 69(12), 7204-7209. doi: 10.1128/AEM.69.12.7204-7209.2003
Valgan, C., Souza, S. M., Smania, E. F., & Smania, A. Jr. (2007). Screening methods to determine antibacterial activity of natural products. Brazilian Journal of Microbiology, 38(2), 369-380. doi: 10.1590/S1517-83822007000200034
Vos, Р., Garrity, G., Jones, D., Krieg, N., Ludwig, W., & Rai, F. (2009). Bergey’s Manual of Systematic Bacteriology. The Firmicutes. New York: Springer.
Ziaei-Nejad, S., Rezaei, M. H., Takami, G. A., Lovett, D. L., Mirvaghefi, A., & Shakouri, M. (2006). The effect of Bacillus spp. bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus. Aquaculture, 252, 516-524. doi: 10.1016/j.aquaculture.2005.07.021

Share this article