Assessing genomic taurine/zebuine admixture in the southern meat cattle based on microsatellite markers

Abstract

A.S. Kramarenko, O.I. Karatieieva, A.V. Lykhach, S.I. Lugovoy, V.Ya. Lykhach, T.V. Pidpala, L.S. Patryeva, S.S. Kramarenko

Hybridization between wild and domestic bovine species occurs worldwide either spontaneously or by organized crossing. The Southern Meat (SM) cattle is a composite developed by crossing Cuban zebu (Bos indicus) with different cattle breeds (Bos taurus) – local Red Steppe, Hereford, Charolais, Santa Gertrudis, Dairy Shorthorn. The main aim of this work was to study the genetic structure of the Southern Meat breed (SM) cattle and to assess the taurine/zebuine admixture in the SM population using microsatellites. A set of 192 heifers representing the SM cattle (the ‘Askaniiske’ State Pilot Farm, Kherson region, Ukraine) was included in the study during 2013-2014. Based on the origin of the individuals studied, all heifers were attributed to two groups according to the different degree of Zebu blood: the LZ group (≤ 3/8 percent Zebu blood; n=100) and the UZ group (>3/8 percent Zebu blood; n=92). Ten bovine autosomal polymorphic microsatellite loci (BM1818, BM1824, BM2113, ETH3, ETH10, INRA023, TGLA53, TGLA122, TGLA227 and SPS115) were genotyped to estimate various parameters of genetic diversity. The total number of genotype estimates ranged substantially over loci from 18 (locus BM1824) to 37 (locus INRA023), giving a mean number of 27.9 ± 1.96 genotypes per locus. Overall, one hundred and four alleles were observed across the 10 microsatellite markers examined, with allelic diversity (the average number of observed alleles per locus) of 10.4 ± 0.76. Significant difference (P<0.05-0.001) was found between the LZ and UZ groups with regard to distribution of allele frequencies across all loci. The values of Ae, Ho, He and Fis in two SM cattle groups did not differ significantly (a non-parametric paired Wilcoxon’s test; for all cases P>0.05). At each locus some alleles were identified that were present at higher frequencies in the LZ group and absent or present at relatively lower frequencies in the UZ group, or vice versa. Evidence for an association between specific alleles at every locus with B.indicus/B.taurus breed was assessed by using a Logistic Regression model. Significant relationship was discovered only for two loci, TGLA227 (χ2=22.30; P<0.001) and ETH10 (χ2=27.70; P<0.001). It can be assumed that the TGLA227 (77 bp) and ETH10 (209-211 bp) alleles among the SM cattle examined individuals were inherited from a B.indicus ancestor. On the other hand, the TGLA227 (89 bp) and ETH10 (217-219 bp) alleles which prevails among individuals in the LZ group were inherited from a B.taurus ancestor. Thus, the SM cattle presented with high level of taurine/zebuine admixture, which is consistent with the breeding history.

Keywords: Bos indicus; Bos taurus; hybridization; southern meat cattle; taurine/zebuine admixture; microsatellite markers

References:
Adams, J. R., Leonard, J. A., & Waits, L. P. (2003). Widespread occurrence of a domestic dog mitochondrial DNA haplotype in southeastern US coyotes. Molecular Ecology, 12(2), 541-546. doi: 10.1046/j.1365-294X.2003.01708.x
Bicalho, H. M. S., Pimenta, C. G., Mendes, I. K. P., Pena, H. B., Queiroz, E. M., & Pena, S. D. J. (2006). Determination of ancestral proportions in synthetic bovine breeds using commonly employed microsatellite markers. Genetics and Molecular Research, 5(3), 432-437.
Bongso, T. A, Hilmi, M., Sopian, M., & Zulkilfi, S. (1988). Chromosomes of Gaur cross domestic cattle hybrids. Research in Veterinary Science, 44(2): 251-254. doi: 10.1016/S0034-5288(18)30850-6
Bradley, D. G., MacHugh, D. E., Loftus, R. T., Sow, R. S., Hoste, C. H., & Cunningham, E. P. (1994). Zebu-taurine variation in Y chromosomal DNA: a sensitive assay for genetic introgression in West African trypanotolerant cattle populations. Animal Genetics, 25(S2), 7-12. doi: 10.1111/j.1365-2052.1994.tb00440.x
Chazara, O., Minvielle, F., Roux, D., Bed’hom, B., Feve, K., Coville, J. L., Kayang, B. B., Lumineau, S., Vignal, A., Boutin, J.-M., & Rognon, X. (2010). Evidence for introgressive hybridization of wild common quail (Coturnix coturnix) by domesticated Japanese quail (Coturnix japonica) in France. Conservation Genetics, 11(3), 1051-1062. doi: 10.1007/s10592-009-9951-8
Choroszy, B., Janik, A., Choroszy, Z., & Zabek, T. (2006). Polymorphism of selected microsatellite DNA sequences in Simmental cattle chosen for identification of QTLs for meat traits. Animal Science Papers and Reports, 24(Suppl 2), 71-77.
Cervini, M., Henrique-Silva, F., Mortari, N., & Matheucci Jr., E. (2006). Genetic variability of 10 microsatellite markers in the characterization of Brazilian Nellore cattle (Bos indicus). Genetics and Molecular Biology, 29(3), 486-490. doi: 10.1590/S1415-47572006000300015
Cosenza, M., Reale, S., Lupo, T., Vitale, F., & Caracappa, S. (2015). Allele frequencies of microsatellite loci for genetic characterization of a Sicilian bovine population. Genetics and Molecular Research, 14(1), 691-699. doi: 10.4238/2015.January.30.12
Czerneková, V., Kott, T., Dudková, G., Sztankóová, Z., & Soldát, J. (2006). Genetic diversity between seven Central European cattle breeds as revealed by microsatellite analysis. Czech Journal of Animal Science, 51, 1-7. doi: 10.17221/3902-CJAS
Edwards, C. J., Gaillard, C., Bradley, D. G., & MacHugh, D. E. (2000). Y???specific microsatellite polymorphisms in a range of bovid species. Animal Genetics, 31(2), 127-130. doi: 10.1046/j.1365-2052.2000.00602.x
Egito, A. A., Paiva, S. R., Maria do Socorro, M., Mariante, A. S., Almeida, L. D., Castro, S. R., & Grattapaglia, D. (2007). Microsatellite based genetic diversity and relationships among ten Creole and commercial cattle breeds raised in Brazil. BMC genetics, 8(1), 83. doi: 10.1186/1471-2156-8-83
Escobar, C. H., Ángel, M. O., Alfonso, H. O., & Guerra, M. T. (2009). Genetic variability of the zebu cattle breed (Bos indicus) in the departament of Huila, Colombia using microsatellite molecular markers. Acta Biológica Colombiana, 14(3), 173-180.
Frantz, A. C., Zachos, F. E., Kirschning, J., Cellina, S., Bertouille, S., Mamuris, Z., Koutsogiannouli, E. A., & Burke, T. (2013). Genetic evidence for introgression between domestic pigs and wild boars (Sus scrofa) in Belgium and Luxembourg: a comparative approach with multiple marker systems. Biological Journal of the Linnean Society, 110(1), 104-115. doi: 10.1111/bij.12111
Frisch, J. E., Drinkwater, R., Harrison, B., & Johnson, S. (1997). Classification of the southern African sanga and East African shorthorn zebu. Animal Genetics, 28(2), 77-83. doi: 10.1111/j.1365-2052.1997.00088.x
Gómez, Y. M., Fernández, M., Rivera, D., Gómez, G., & Bernal, J. E. (2013). Genetic characterization of colombian Brahman cattle using microsatellites markers. Russian journal of genetics, 49(7), 737-745. doi: 10.1134/S1022795413070041
Halbert, N. D., Ward, T. J., Schnabel, R. D., Taylor, J. F., & Derr, J. N. (2005). Conservation genomics: disequilibrium mapping of domestic cattle chromosomal segments in North American bison populations. Molecular Ecology, 14(8), 2343-2362. doi: 10.1111/j.1365-294x.2005.02591.x
Hall, S. J., & Bradley, D. G. (1995). Conserving livestock breed biodiversity. Trends in ecology & evolution, 10(7), 267-270. doi: 10.1016/0169-5347(95)90005-5
Hammer, ??., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4(1), 1-9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm
Hanotte, O., Tawah, C. L., Bradley, D. G., Okomo, M., Verjee, Y., Ochieng, J., & Rege, J. E. O. (2000). Geographic distribution and frequency of a taurine Bos taurus and an indicine Bos indicus Y specific allele amongst sub???Saharan African cattle breeds. Molecular ecology, 9(4), 387-396. doi: 10.1046/j.1365-294x.2000.00858.x
Hartati, H., Utsunomiya, Y. T., Sonstegard, T. S., Garcia, J. F., Jakaria, J., & Muladno, M. (2015). Evidence of Bos javanicus × Bos indicus hybridization and major QTLs for birth weight in Indonesian Peranakan Ongole cattle. BMC genetics, 16(1), 75. doi: 10.1186/s12863-015-0229-5
Hussein, I. H. A. (2014). Phenotypic and Genotypic Characterization of Fuga Cattle of Western Sudan Compared to (Kenana and Butana) Dairy Breeds. Doctoral dissertation, University of Khartoum, Sudan.
Huxel, G. R. (1999). Rapid displacement of native species by invasive species: effect of hybridization. Biological Conservation, 89, 143-152. doi: 10.1016/S0006-3207(98)00153-0
Ibeagha-Awemu, E. M., Jann, O. C., Weimann, C., & Erhardt, G. (2004). Genetic diversity, introgression and relationships among West/Central African cattle breeds. Genetics Selection Evolution, 36(6), 673-690. doi: 10.1051/gse:2004024
Janík, A., Zabek, T., Radko, A., & Natonek, M. (2001). Evaluation of polymorphism at 11 microsatellite loci in Simmental cattle raised in Poland. Annals of Animal Science, 1(2), 19-29.
Janik, A., Zabek, T., & Radko, A. (2002). Identyfikacja polimorfizmu 11 loci mikrosatelitow u bydla rasy hereford. Medycyna Weterynaryjna, 58(11), 867-870 (In Polish).
Kesvulu, P. C., Rao, G. N., Niyazahmed, A. S., & Gupta, B. R. (2009). Molecular genetic characterization of Punganur cattle. Tamilnadu Journal of Veterinary and Animal Sciences, 5(5), 179-185.
Kharzinova, V. R., Dotsev, A. V., Kramarenko, A. S., Layshev, K. A., Romanenko, T. M., Solov'eva, A. D., Deniskova, T. E., Kostyunina, O. V., Brem, G., & Zinovieva, N. A. (2016). Study of the allele pool and the degree of genetic Introgression of semi-domesticated and wild populations of reindeer (Rangifer tarandus L., 1758) using microsatellites. Agricultural Biology, 51(6), 811-823. doi: 10.15389/agrobiology.2016.6.811eng
Kundrat, R., Urban, T. (2007). Analýza variability mikrosatelit? u populací masných plemen skotu v ??eské Republice/ In: VII-th International Conference of PhD. and MSc. Students “Genetics and Animal Breeding”, May, 17-18, Brno, 22-29 (In Czech).
Le Roux, J. J., Foxcroft, L. C., Herbst, M., & MacFadyen, S. (2015). Genetic analysis shows low levels of hybridization between African wildcats (Felis silvestris lybica) and domestic cats (F.s.catus) in South Africa. Ecology and Evolution, 5(2), 288-299. doi: 10.1002/ece3.1275
Lecis, R., Pierpaoli, M., Biro, Z. S., Szemethy, L., Ragni, B., Vercillo, F., & Randi, E. (2006). Bayesian analyses of admixture in wild and domestic cats (Felis silvestris) using linked microsatellite loci. Molecular Ecology, 15(1), 119-131. doi: 10.1111/j.1365-294X.2005.02812.x
Lirón, J. P., Peral-García, P., & Giovambattista, G. (2006). Genetic characterization of Argentine and Bolivian Creole cattle breeds assessed through microsatellites. Journal of Heredity, 97(4), 331-339. doi: 10.1093/jhered/esl003
Loftus, R. T., Ertugrul, O., Harba, A. H., El-Barody, M. A. A., MacHugh, D. E., Park, S. D. E., & Bradley, D. G. (1999). A microsatellite survey of cattle from a centre of origin: the Near East. Molecular Ecology, 8(12), 2015-2022. doi: 10.1046/j.1365-294x.1999.00805.x
Luo, X. L., Song, H. F., & Guan, J. Q. (2014). Investigation on mechanism of sterility of male hybrids between yak and cattle. Journal of Applied Animal Research, 42(4), 395-399. doi: 10.1080/09712119.2013.875907
MacHugh, D. E., Shriver, M. D., Loftus, R. T., Cunningham, P., & Bradley, D. G. (1997). Microsatellite DNA variation and the evolution, domestication and phylogeography of taurine and zebu cattle. Genetics 146: 1071–1086.
MacHugh, D. E., Loftus, R. T., Cunningham, P., & Bradley, D. G. (1998). Genetic structure of seven European cattle breeds assessed using 20 microsatellite markers. Animal Genetics, 29(5), 333-340. doi: 10.1046/j.1365-2052.1998.295330.x
Magee, D. A., Meghen, C., Harrison, S., Troy, C. S., Cymbron, T., Gaillard, C., Morrow, A., Maillard, J. C., & Bradley, D. G. (2002). A partial African ancestry for the Creole cattle populations of the Caribbean. Journal of Heredity, 93(6), 429-432. doi: 10.1093/jhered/93.6.429
Maudet, C., Luikart, G., & Taberlet, P. (2002). Genetic diversity and assignment tests among seven French cattle breeds based on microsatellite DNA analysis. Journal of Animal Science, 80(4), 942-950. doi: 10.2527/2002.804942x
Nijman, I. J., Bradley, D. G., Hanotte, O., Otsen, M., & Lenstra, J. A. (1999). Satellite DNA polymorphisms and AFLP correlate with Bos indicus???taurus hybridization. Animal Genetics, 30(4), 265-273. doi: 10.1046/j.1365-2052.1999.00475.x
Nijman, I. J., Otsen, M., Verkaar, E. L. C., De Ruijter, C., Hanekamp, E., Ochieng, J. W., Shamshad, S., Rege, J. E. O., Hanotte, O., Barwegen, M. W., Sulawati, T. & Lenstra, J. A. (2003). Hybridization of banteng (Bos javanicus) and zebu (Bos indicus) revealed by mitochondrial DNA, satellite DNA, AFLP and microsatellites. Heredity, 90(1), 10-16. doi: 10.1038/sj.hdy.6800174
Nikolov, I. S., Stoeckle, B. C., Markov, G., & Kuehn, R. (2017). Substantial hybridisation between wild boars (Sus scrofa scrofa) and East Balkan pigs (Sus scrofa f. domestica) in natural environment as a result of semi-wild rearing in Bulgaria. Czech Journal of Animal Science, 62(1), 1-8. doi: 10.17221/49/2015-CJAS
Novoa, M. A., & Usaquén, W. (2010). Population genetic analysis of the Brahman cattle (Bos indicus) in Colombia with microsatellite markers. Journal of Animal Breeding and Genetics, 127(2), 161-168. doi: 10.1111/j.1439-0388.2009.00811.x
Nussberger, B., Greminger, M. P., Grossen, C., Keller, L. F., & Wandeler, P. (2013). Development of SNP markers identifying European wildcats, domestic cats, and their admixed progeny. Molecular Ecology Resources, 13(3), 447-460. doi: 10.1111/1755-0998.12075
Peakall, R., & Smouse, P. E. (2012). GenAIEx 6.5: genetic analysis in Excel. Population genetic software for teaching and researchd − an update. Bioinformatics, 28(19), 2537−2539. doi: 10.1093/bioinformatics/bts460
Pilarczyk, R., Vovk, S., & Kruzhel, B. (2015). Beef cattle breeding in Ukraine. Acta Scientiarum Polonorum. Zootechnica, 14(2), 3-22.
Polziehn, R. O., Strobeck, C., Sheraton, J., & Beech, R. (1995). Bovine mtDNA discovered in North American bison populations. Conservation Biology, 9(6), 1638-1638. doi: 10.1046/j.1523-1739.1995.09061638.x
Putnova, L., Vrtkova, I., Srubarova, P., & Stehlik, L. (2011). Utilization of a 17 microsatellites set for bovine traceability in Czech cattle populations. Iranian Journal of Applied Animal Science, 1(1), 31-37.
Qi, X. B., Jianlin, H., Wang, G., Rege, J. E. O., & Hanotte, O. (2010). Assessment of cattle genetic introgression into domestic yak populations using mitochondrial and microsatellite DNA markers. Animal Ggenetics, 41(3), 242-252. doi: 10.1111/j.1365-2052.2009.01989.x
Radko, A., Zyga, A., Zabek, T., & S??ota, E. (2005). Genetic variability among Polish Red, Hereford and Holstein-Friesian cattle raised in Poland based on analysis of microsatellite DNA sequences. Journal of Applied Genetics, 46(1), 89-91. PMID: 15741669
Rhymer, J. M., & Simberloff, D. (1996). Extinction by hybridization and introgression. Annual Review of Ecology and Systematics, 27(1), 83-109. doi: 10.1146/annurev.ecolsys.27.1.83
Rodriguez, D., Cedeño???Vázquez, J. R., Forstner, M. R., & Densmore, L. D. (2008). Hybridization between Crocodylus acutus and Crocodylus moreletii in the Yucatan Peninsula: II. Evidence from microsatellites. Journal of Experimental Zoology, 309A, 674-686. doi: 10.1002/jez.499
Saturano, K. N., Herawati, E., & Setyawan, A. D. (2018). Interspecies and intraspecies genetic diversity of Ongole Grade cattle and Madura cattle based on microsatellite DNA markers. Biodiversitas, 19(4), 1593-1600. doi: 10.13057/biodiv/d190453
Sifuentes-Rincón, A. M., Puentes-Montiel, H., & Parra-Bracamonte, G. M. (2007). Assessment of genetic structure in Mexican Charolais herds using microsatellite markers. Electronic Journal of Biotechnology, 10(4), 492-499. doi: 10.4067/S0717-34582007000400002
Suprun, I. A., Ruban, S. Y., & Getya, A. A. (2016). Development status of meat cattle in Ukraine. Bulgarian Journal of Agricultural Science, 22(1), 140-142.
Stevanovi??, J., Stanimirovi??, Z., Dimitrijevi??, V., Stoji??, V., Fratri??, N., & Lazarevi??, M. (2009). Microsatellite DNA polymorphism and its usefulness for pedigree verification in Simmental cattle from Serbia. Acta Veterinaria, 59(5-6), 621-631. doi: 10.2298/AVB0906621S
Tumennasan, K., Tuya, T., Hotta, Y., Takase, H., Speed, R. M., & Chandley, A. C. (1997). Fertility investigations in the F1 hybrid and backcross progeny of cattle (Bos taurus) and yak (B. grunniens) in Mongolia. Cytogenetic and Genome Research, 78(1), 69-73. doi: 10.1159/000134633
Verkaar, E. L., Nijman, I. J., Beeke, M., Hanekamp, E., & Lenstra, J. A. (2004). Maternal and paternal lineages in cross-breeding bovine species. Has wisent a hybrid origin? Molecular Biology and Evolution, 21(7), 1165-1170. doi: 10.1093/molbev/msh064
Yoon, D. H., Kong, H. S., Oh, J. D., Lee, J. H., Cho, B. W., Kim, J. D., Jeon, K. J., Jo, C. Y., Jeon, G. J., & Lee, H. K. (2005). Establishment of an individual identification system based on microsatellite polymorphisms in Korean cattle (Hanwoo). Asian-Australasian Journal of Animal Sciences, 18(6), 762-766. doi: 10.5713/ajas.2005.762
 

Share this article