Biofilms of pathogenic bacteria in pig industry

Abstract

O.V. Kolchyk, A.I. Buzun, A.P. Paliy, L.I. Nalivayko, O.M. Chekan, N.P. Grebenik, I.V. Bondarenko, H.I. Rebenko, V.Yu. Kushnir, N.I. Todorov

In the industrial pig farm for 26 thousand heads, the analysis of the influence of a forage factor on bacteria carriers of a uterine pig population in connection with mass morbidity of dairy piglets on anaerobic enterotoxemia is carried out. Actinobacillus pleuropneumonia, Pasteurella multocida, Clostridium perfringens, Neisseria spp., Candida albicans, Aspergillus niger which are able to form biofilms, were isolated from five samples of “SK-1” compound feed for pregnant sows and from the blood of animals (n=20) fed with this compound feed. The structural basis of the most stable biofilms in vitro were the aerobic fungi Aspergillus niger and Candida albicans. Biofilm-forming variants of these bacteria showed multidrug resistance to 30 antimicrobial drugs (synthetic penicillins, cephalosporins, fluoroquinolones, aminoglycosides, tetracyclines, combination drugs). Isolates of associative microflora isolated from the blood of sows were pathogenic for 30% of laboratory mice. It was found that probiotic agent No1 (composition based on Bischofite with probiotics) showed the universal bactericidal activity against the bacteria Actinobacillus pleuropneumonia, Pasteurella multocida, Clostridium perfringens, Neisseria spp.

Key words?? biofilms, compound feed, microbial contamination of feed, multiresistance, sows
 

References

 

Abdullahi, U. F., Igwenagu, E., Muazu, A., Aliyu, S., & Umar, M. I. (2016). Intrigues of biofilm: A perspective in veterinary medicine. Veterinary world, 9(1), 12-18. doi: 10.14202/vetworld.2016.12-18

Ali, A., Danbappa, R., Alhassan, K. A., & Shah, M. M. (2018). Isolation and identification of microbial contaminants associated with commercial poultry feeds. Journal of Applied and Advanced Research, 3(5), 142-147. doi: 10.21839/jaar.2018.v3i5.231

Anderson, G. G., & O'Toole, G. A. (2008). Innate and induced resistance mechanisms of bacterial biofilms. Current topics in microbiology and immunology, 322, 85-105. doi: 10.1007/978-3-540-75418-3_5

Bintsis, T. (2018). Microbial pollution and food safety. AIMS Microbiology, 4(3), 377-396. doi: 10.3934/microbiol.2018.3.377

Bujold, A. R., & MacInnes, J. I. (2015). Identification of putative adhesins of Actinobacillus suis and their homologues in other members of the family Pasteurellaceae. BMC Research Notes, 8, 675. doi: 10.1186/s13104-015-1659-x

Clutterbuck, A. L., Woods, E. J., Knottenbelt, D. C., Clegg, P. D., Cochrane, C. A., & Percival, S. L. (2007). Biofilms and their relevance to veterinary medicine. Veterinary microbiology, 121(1-2), 1-17. doi: 10.1016/j.vetmic.2006.12.029

Crump, J. A., Griffin, P. M., & Angulo, F. J. (2002). Bacterial Contamination of Animal Feed and Its Relationship to Human Foodborne Illness. Clinical Infectious Diseases, 35(7), 859-865. doi: 10.1086/342885

Donlan, R. M., & Costerton, J. W. (2002). Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms. Clinical Microbiology Reviews, 15(2), 167-193. doi: 10.1128/CMR.15.2.167-193.2002

Dürig, A., Kouskoumvekaki, I., Vejborg, R. M., & Klemm, P. (2010). Chemoinformatics-assisted development of new anti-biofilm compounds. Applied microbiology and biotechnology, 87(1), 309-317. doi: 10.1007/s00253-010-2471-0

Flemming, H. C., & Wingender, J. (2010). The Biofilm Matrix. Nature Reviews Microbiology, 8, 623-633. doi: 10.1038/nrmicro2415

Gardner, A. J., Percival, S. L., & Cochrane, C. A. (2011). Biofilms and Role to Infection and Disease in Veterinary Medicine. From book Biofilms and Veterinary Medicine, 111-128. doi: 10.1007/978-3-642-21289-5_4

Geiser, D. M., Klich, M. A., Frisvad, J. C., Peterson, S. W., Varga, J., & Samson, R. A. (2007). The current status of species recognition and identification in Aspergillus. Studies in Mycology, 59, 1-10. doi: 10.3114/sim.2007.59.01

Hadzevych, O. V., Paliy, A. P., Kinash, O. V., Petrov, R. V., & Paliy, A. P. (2019). Antibiotic resistance of microorganisms isolated from milk. World of Medicine and Biology, 3(69), 245-250. doi: 10.26724/2079-8334-2019-3-69-245-250

Hall-Stoodley, L., & Stoodley, P. (2009). Evolving concepts in biofilm infections. Cellular microbiology, 11(7), 1034-1043. doi: 10.1111/j.1462-5822.2009.01323.x

Jacques, M., Aragon, V., & Tremblay, Y. D. N. (2010). Biofilm formation in bacterial pathogens of veterinary importance. Animal Health Research Reviews, 11(2), 97-121. doi: 10.1017/S1466252310000149

Kasianenko, O. I., Kasianenko, S. M., Paliy, A. P., Petrov, R. V., Kambur, M. D., Zamaziy, A. A., Livoshchenko, L. P., Livoshchenko, Ye. M., Nazarenko, S. M., Klishchova, Zh. E., & Palii, A. P. (2020). Application of mannan oligosaccaharides (Alltech Inc.) in waterfowl: optimal dose and effectiveness. Ukrainian Journal of Ecology, 10(3), 63-68. doi: 10.15421/2020_134

Labrie, J., Pelletier-Jacques, G., Deslandes, V., Ramjeet, M., Auger, E., Nash, J. H., & Jacques, M. (2010). Effects of growth conditions on biofilm formation by Actinobacillus pleuropneumoniae. Veterinary research, 41(1), 3. doi: 10.1051/vetres/2009051

Landini, P., Antoniani, D., Burgess, J. G., & Nijland, R. (2010). Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. Applied microbiology and biotechnology, 86(3), 813-823. doi: 10.1007/s00253-010-2468-8

Lasa, I., Del Pozo, J. L., Penadés, J. R., & Leiva, J. (2005). Bacterial biofilms and infection. Anales del Sistema Sanitario de Navarra, 28(2), 163-175. doi: 10.4321/s1137-66272005000300002

Machado???Moreira, B., Richards, K., Brennan, F., Abram, F., & Burgess, C. M. (2019). Microbial Contamination of Fresh Produce: What, Where, and How? Comprehensive Reviews in Food Science and Food Safety, 18(6), 1727-1750. doi: 10.1111/1541-4337.12487

Maciorowski, K. G., Herrera, P., Jones, F. T., Pillai, S. D., & Ricke, S. C. (2007). Effects on poultry and livestock of feed contamination with bacteria and fungi. Animal Feed Science and Technology, 133(1-2), 109-136. doi: 10.1016/j.anifeedsci.2006.08.006

Mahami, T., Togby-Tetteh, W., Kottoh, D. I., Amoakoah-Twum, L., Gasu, E., Annan, S. N. Y., Larbi, D., Adjei, I., & Adu-Gyamfi, A. (2019). Microbial Food Safety Risk to Humans Associated with Poultry Feed: The Role of Irradiation. International Journal of Food Science, 2019, ID 6915736. doi: 10.1155/2019/6915736

McClenny, N. (2005). Laboratory detection and identification of Aspergillus species by microscopic observation and culture: the traditional approach. Medical Mycology, 43(Supplement_1), 125-128. doi: 10.1080/13693780500052222

Mah, T. F. (2012). Biofilm-specific antibiotic resistance. Future microbiology, 7(9), 1061-1072. doi: 10.2217/fmb.12.76

Milivojevic, D., Šumonja, N., Medi??, S., Pavic, A., Moric, I., Vasiljevic, B., Senerovic, L., & Nikodinovic-Runic, J. (2018). Biofilm-forming ability and infection potential of Pseudomonas aeruginosa strains isolated from animals and humans. Pathogens and Disease, 76(4), fty041. doi: 10.1093/femspd/fty041

Moe, K. K., Mimura, J., Ohnishi, T., Wake, T., Yamazaki, W., Nakai, M., & Misawa, N. (2010). The mode of biofilm formation on smooth surfaces by Campylobacter jejuni. The Journal of veterinary medical science, 72(4), 411-416. doi: 10.1292/jvms.09-0339

Nazarenko, S. M., Paliy, A. P., Berezovskiy, A. V., Fotin, A. I., Fotin, O. V., Petrov, R. V., ???sianenko, ??. ??., Lazorenko, L. N., Negreba, J. V., Palii, A. P., & Rebenko, H. I. (2020). Improving the sanitary condition of pond bed by forage grass cultivation. Ukrainian Journal of Ecology, 10(2), 368-374. doi: 10.15421/2020_111

O'Toole, G. A., & Kolter, R. (1998). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Molecular microbiology, 28(3), 449-461. doi: 10.1046/j.1365-2958.1998.00797.x

Paliy, A. P., Mashkey, A. M., Sumakova, N. V., & Paliy, A.P. (2018a). Distribution of poultry ectoparasites in industrial farms, farms, and private plots with different rearing technologies. Biosystems Diversity, 26(2), 153-159. doi: 10.15421/011824

Paliy, A. P., Sumakova, N. V., Mashkey, A. M., Petrov, R. V., Paliy, A. P., & Ishchenko, K. V. (2018b). Contamination of animal-keeping premises with eggs of parasitic worms. Biosystems Diversity, 26(4), 327-333. doi: 10.15421/011849

Paliy, A. P., Sumakova, N. V., Paliy, A. P., & Ishchenko, K. V. (2018c). Biological control of house fly. Ukrainian Journal of Ecology, 8(2), 230-234. doi: 10.15421/2018_332

Paliy, A. P., Zavgorodniy, A. I., Stegniy, B. T., & Palii, A. P. (2020). Scientific and methodological grounds for controlling the development and use of disinfectants. Monograph. Kharkiv: «Miskdruk», 318. ISBN: 978-617-619-237-4. (in Ukrainian)

Paliy, A., Sumakova, N., Petrov, R., Shkromada, O., Ulko, L., & Palii, A. (2019). Contamination of urbanized territories with eggs of helmiths of animals. Biosystems Diversity, 27(2), P. 118-124. doi: 10.15421/011916

Paterson, S. (2017). Biofilms: their importance in veterinary medicine. Companion Animal, 22(11), 659-668. doi: 10.12968/coan.2017.22.11.659

Pereira, C. S., Cunha, S. C., & Fernandes, J. O. (2019). Prevalent Mycotoxins in Animal Feed: Occurrence and Analytical Methods. Toxins, 11(5), 290. doi: 10.3390/toxins11050290

Pereyra, C. M., Cavaglieri, L. R., Chiacchiera, S. M., & Dalcero, A. M. (2010). Fungi and Mycotoxins in Feed Intended for Sows at Different Reproductive Stages in Argentina. Veterinary Medicine International, 2010, ID 569108. doi: 10.4061/2010/569108

Ramírez-Castillo, F. Y., Loera-Muro, A., Vargas-Padilla, N. D., Moreno-Flores, A. C., Avelar-González, F. J., Harel, J., Jacques, M., Oropeza, R., Barajas-García, C. C., & Guerrero-Barrera, A. L. (2018). Incorporation of Actinobacillus pleuropneumoniae in Preformed Biofilms by Escherichia coli Isolated From Drinking Water of Swine Farms. Frontiers in veterinary science, 5, 184. doi: 10.3389/fvets.2018.00184

Richards, J. J., & Melander, C. (2009). Controlling bacterial biofilms. Chembiochem, 10(14), 2287-2294. doi: 10.1002/cbic.200900317

Romanko, M., Yaroshenko, M., Orobchenko, A., Kutsan, A., Paliy, A., & Dubin, R. (2016). Study of antimycotic properties of Ag and Cu nanoparticles and their compositions in experiments on models of test-culture Aspergillus fumigatus. Pasze Przemyslowe, 3/4, 87-91.

Romling, U., & Balsalobre, C. (2012). Biofilm infections, their resilience to therapy and innovative treatment strategies. Journal of Internal Medicine, 272, 541-561. doi: 10.1111/joim.12004

Roy, R., Tiwari, M., Donelli, G., & Tiwari, V. (2018). Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence, 9(1), 522-554. doi: 10.1080/21505594.2017.1313372

R?zicka, F., Holá, V., Votava, M., & Tejkalová, R. (2007). Importance of biofilm in Candida parapsilosis and evaluation of its susceptibility to antifungal agents by colorimetric method. Folia microbiologica, 52(3), 209-214. doi: 10.1007/BF02931300

Sager, M., Benten, W. P., Engelhardt, E., Gougoula, C., & Benga, L. (2015). Characterization of Biofilm Formation in [Pasteurella] pneumotropica and [Actinobacillus] muris Isolates of Mouse Origin. PLoS One, 10(10), e0138778. doi: 10.1371/journal.pone.0138778

Saigal, S., Bhargava, A., Mehra, S. K., Dakwala, F. (2011). Identification of Candida albicans by using different culture medias and its association in potentially malignant and malignant lesions. Contemporary clinical dentistry, 2(3), 188-193. doi: 10.4103/0976-237X.86454

Sanchez, C. J., Mende, K., Beckius, M. L., Akers, K. S., Romano, D. R., Wenke, J. C., & Murray, C. K. (2013). Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infectious Diseases, 13, 47. doi: 10.1186/1471-2334-13-47

Schillaci, D., & Vitale, M. (2012). Biofilm Related to Animal Health, Zoonosis and Food Transmitted Diseases: Alternative Targets for Antimicrobial Strategy? Journal of Microbial & Biochemical Technology, 4(4), 7-10. doi: 0.4172/1948-5948.1000e108

Schlegelová, J., Babák, V., Holasová, M., & Dendis, M. (2008). The biofilm-positive Staphylococcus epidermidis isolates in raw materials, foodstuffs and on contact surfaces in processing plants. Folia microbiologica, 53(6), 500-504. doi: 10.1007/s12223-008-0078-y

Shirokikh, I. G., Kozlova, L. M., Shirokikh, A. A., Popov, F. A., & Tovstik, E. V. (2017). Effects of tillage technologies and application of biopreparations on micromycetes in the rhizosphere and rhizoplane of spring wheat. Eurasian Soil Science, 50, 826-831. doi: 10.1134/S1064229317070110

Stacy, A., Everett, J., Jorth, P., Trivedi, U., Rumbaugh, K. P., & Whiteley, M. (2014). Bacterial fight-and-flight responses enhance virulence in a polymicrobial infection. Proceedings of the National Academy of Sciences, 111(21), 7819-7824. doi: 10.1073/pnas.1400586111

Stepanovic, S., Vukovi, D., Hola, V., di Bonaventura, G., Djuki??, S., & ??irkovi??, I. (2007). Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for 42 assessment of biofilm production by Staphylococci. APMIS, 115(8), 891-899. doi: 10.1111/j.1600-0463.2007.apm_630.x

Tamang, J. P., Shin, D. H., Jung, S. J., & Chae, S. W. (2016). Functional Properties of Microorganisms in Fermented Foods. Frontiers in microbiology, 7, 578. doi: 10.3389/fmicb.2016.00578

Tremblay, Y. D., Lévesque, C., Segers, R. P., & Jacques, M. (2013). Method to grow Actinobacillus pleuropneumoniae biofilm on a biotic surface. BMC Veterinary Research, 9, 213. doi: 10.1186/1746-6148-9-213

Van Houdt, R., & Michiels, C. W. (2010). Biofilm formation and the food industry, a focus on the bacterial outer surface. Journal of applied microbiology, 109(4), 1117-1131. doi: 10.1111/j.1365-2672.2010.04756.x

Zavgorodniy, A. I., Stegniy, B. T., Paliy, A. P., Gorjeev, V. M., & Smirnov, A. M. (2013). Scientific and practical aspects of disinfection in veterinary medicine. Kharkiv: FOP Brovin O.V. (in Ukrainian)

 

Share this article