Biotechnological approaches to the reproduction of remontant forms of red raspberry


L.P. Khlebova, A.M. Titova, A.V. Pirogova

Rubus idaeus L. is one of the oldest and most widespread berry crops, which is cultivated for the excellent taste as well as for medical and dietary properties of berries. Rubus fruits contain a significant amount of vitamins A and C, anthocyanins, polyphenolic substances, which determines their high antioxidant activity. Remontant red raspberry forms are able to berry on annual shoots in the second half of summer, which extends the term of consumption of fresh berries by 1.5-2 months. However, many forms of remontant raspberry have a low potential for vegetative propagation compared to summer varieties, which makes them difficult to reproduce and to use in the breeding process. We investigated the possibility of increasing the efficiency of in vitro micropropagation of a remontant raspberry variety ʻBiryulevskaya’. The effects of 6-benzylaminopurine (6-BAP) at concentrations of 0.5–3 mg l-1 and thidiazuron (TDZ) at concentrations of 0.05–0.2 mg l-1 as well as doubled and tripled iron chelate Fe-EDTA (Ferric ethylenediamine-tetraacetic acid) doses were studied. We found the adding 1.0 mg l-1 6-BAP to the MS medium containing a triple dose of iron chelate, provided intensive proliferation of high quality adventitious shoots.
 Keywords: Red raspberry; Remontant form; In vitro reproduction; Plant growth regulators; Iron chelate
Anderson, W. C. (1980). Tissue culture propagation of red raspberries and black raspberries, Rubus idaeus and R. occidentalis. Acta Hort., 112, 13-20.
Borodaeva, Zh. A., Muratova, S. A., Kulko, S. V., & Tokhtar, L. A. (2017). Influence of various sources of carbohydrate nutrition on rhizogenesis of microcrops of berry crops under the in vitro conditions. Belgorod State University Scientific Bulletin. Biological sciences, 41, 25 (274), 21-35. (In Russian)
Çekiç, Ç., & Özgen, M. (2010). Comparison of antioxidant capacity and phytochemical properties of wild and cultivated red raspberries (Rubus idaeus L.). Journal of Food Composition and Analysis, 23, 540-544.
Clapa, D., Fira, A., & Joshee, N. (2013). An efficient ex vitro rooting and acclimatization method for horticultural plants using float hydroculture. Hortscience 48(9), 1159-1167.
Clapa, D., Fira, A., & Pacurar, I. (2008). The in vitro propagation of the raspberry cultivar Citria. Bulletin UASVM, Horticulture 65(1), 99-103.
Dziedzic, E., & Jagła, J. (2013). Micropropagation of Rubus and Ribes spp. Lambardi, M., Ozudogru, E. A., Jain, S. M. (eds.). Protocols for micropropagation of selected economically important horticultural plants. Humana Press: Totowa, NJ, USA.
Evdokimenko, S. N. (2009). Use of the productivity potential of remontant forms of raspberry in breeding. Russian Agricultural Sciences, 35(3), 160-162.
Gajdosova, A., Ostrolucká M. A., Libiaková, G., Ondrušková E., & Šimala D. (2006). Microclonal propagation of Vaccinium sp. and Rubus sp. and detection of genetic variability of culture in vitro. Journal of Fruit and Ornamental Plant Research, 14(1), 103-119.
Hunková, Ju., Libiaková G., & Gajdošová A. (2016). Shoot proliferation ability of selected cultivars of Rubus spp. as influenced by genotype and cytokinin concentration. Journal of Central European Agriculture, 17(2), 379-390. DOI: 10.5513/JCEA01/17.2.1718
Ivanova-Khanina, L. V. (2014). Optimizing conditions for introduction of raspberry and blackberry into cultivation in vitro. Scientific Journal of KubSAU, 101(07), 1-12. (In Russian)
James, D. J., Knight, V. H., & Thurbon, I. J. (1980). Micropropagation of the red raspberry and the influence of phloroglucinol. J. Hort. Sci., 12, 313-319.
Kulkhanova, D. S., Plaksina, T. V., & Borodulina, I. D. (2012). Remontant raspberry varieties’ propagation in vitro. The News of Altai State University, 3-2(75), 42-45. (In Russian)
Lebedev, V., Arkaev, M., Dremova, M., Pozdniakov, I., & Shestibratov, K. (2019). Effects of growth regulators and gelling agents on ex vitro rooting of raspberry. Plants, 8, 3, 1-10. doi:10.3390/plants8010003
Lee, J., Dossett, M., & Finn, C. E. (2012). Rubus fruit phenolic research: The food, the bad, and the confusing. Food Chem., 130, 785-796.
Marchi, P. M., Antunes, L. E. C., Pereira, I. S., Höhn, D., & Valgas, R. A. (2018). Vegetative propagation of raspberry from leafy cuttings. Rev. Bras. Frutic., Jaboticabal, 40, 5, 1-5.
McGhie, T. K., Hall, H. K., Ainge, G. D., & Mowat, A. D. (2002). Breeding Rubus cultivars for high anthocyanin content and high antioxidant capacity. Acta Hort, 585, 495-500.
Mezzetti, B., Savini, G., Carnevali, F., & Mott, D. (1997). Plant genotype and growth regulators interaction affecting in vitro morphogenesis of blackberry and raspberry. Biologia Plantarum, 39(1), 139-150. 10.1023/A:1000381612029.
Moyer, R. A., Hummer, K. E., Finn, C. E., Frei, B., & Wrolstad, R. E. (2002) Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus and Ribes. Journal of Agricultural and Food Chemistry, 50(3), 519-525. DOI: 10.1021/jf011062r
Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tabacco tissue culture. Physiol. Plant, 15, 473-497.
Poothong, S., & Reed B. M. (2015). Increased CaCl2, MgSO4, and KH2PO4 improve the growth of micropropagated red raspberries. In Vitro Cell. Dev. Biol. – Plant, 51, 648-658 DOI 10.1007/s11627-015-9720-y
Poothong, S., & Reed, B. M. (2014). Modeling the effects of mineral nutrition for improving growth and development of micropropagated red raspberries. Scientia Horticulturae, 165, 132-141. doi:10.1016/j.scienta.2013.10.040
Shornikov, D. G., Bryukhina, S. A., Muratova, S. A., Yankovskaya, M. B., & Papikhin, R. V. (2010). In vitro conditions improvement for berry and ornamental plants micropropagation. TSU Bulletin, 15(2), 640-645. (In Russian)
Skovorodnikov, D. N., Kazakov, I. V., Evdokimenko, S. N., & Sazonov, F. F. (2012). Application of diphenylurea derivates in clonal micropropagation of primocane fruiting raspberry and black currants. Acta Hort. ISHS, 946, 135-138.
Sobczykiewicz, D. (1984). Mass production of raspberry plantlets through micropropagation and rooting them directly in sand-peat mixture. Fruit Sci. Rep., XI(2), 73-77.
Solovykh, N. V., & Budagovsky A.V. (2018). Stimulation of risogenesis of red and black raspberry in vitro with use of coherent radiation. Agrarnayа nauka Evro-Severo-Vostoka, 66(5), 64-68. doi: 10.30766/2072-9081.2018.66.5.64-68 (In Russian)
Stoevska, T., Trifonova, A., & Karadocheva, D. (1995). Micropropagation of raspberries (Rubus idaeus). Biotechnology & Biotechnological Equipment, 9(2-3), 27-30. DOI: 10.1080/13102818.1995.10818837
Tsao, C. W. V., Postman, J. & Reed, B. M. (2000). Virus infections reduce in vitro multiplication of ‘Malling Landmark’ raspberry. In Vitro Cellular & Developmental Biology. – Plant, 36. 65-68. 10.1007/s11627-000-0015-5.
Tsao, C. W. V., Reed, B. M. (2002). Gelling agents, silver nitrate, and sequestrene iron influence adventitious shoot and callus formation from Rubus leaves. In Vitro Cell. Dev. Biol. – Plant, 38, 29-32.
Wu, J. H., Miller, S. A., Hall, H. K., & Mooney, P. A. (2009) Factors affecting the efficiency of micropropagation from lateral buds and shoot tips of Rubus. Plant Cell, Tissue and Organ Culture, 99 (1). 17-25. DOI: 10.1007/s11240-009-9571-5
Xiao, D., Huang, Y., Park, E., Edirisinghe, I., & Burton-Freeman, B. (2017). Red raspberries and insulin action: understanding the role of red raspberry consumption on postprandial metabolic indices. FASEB Journal, Bethesda, 31(1) 973-979.
Zawadska, M., & Orlikowska, T. (2006a). Factors modifying regeneration in vitro of adventitious shoots in five red raspberry cultivars. Journal of Fruit and Ornamental Plant Research, 14, 105-115.
Zawadzka, M., & Orlikowska, T. (2006b). The influence of Fe-EDDHA in red raspberry cultures during shoot multiplication and adventitious regeneration from leaf explants. Plant Cell Tiss Org Cult, 85, 145-149.
Zawadzka, M., & Orlikowska, T. (2009). Influence of FeEDDHA on in vitro rooting and acclimatisation of red raspberry (Rubus ideaus L.) in peat and vermiculite. J. Hort. Sci. Biotechnol., 84, 599-603.

Share this article