Effectiveness of additional mechanical ventilation in naturally ventilated dairy housing barns during heat waves

Abstract

O. Izhboldina, R. Mylostyvyi, O. Khramkova, O. Pavlenko, N. Kapshuk, O. Chernenko, A. Matsyura, G. Hoffmann

We presented an algorithm to predict the temperature-humidity index in a naturally ventilated barn. We found that use of additional accelerating fans reduced the temperature-humidity index in a naturally ventilated barn by 0.4-1.0 units and surface temperature of dairy cows by 0.4-0.5°C in the hottest period. We also revealed the limitations of suggested model in assessing the effectiveness of additional mechanical ventilation in the barns. Slight decrease of temperature-humidity index in animal keeping area and cooling of cattle body surface should be further enhanced, especially during the heat waves.

Key words: Microclimate of barn; Body temperature of cows; Cooling; Modeling; Algorithm

 

References

Bilgili, M., & Sahin, B. (2010). Comparative analysis of regression and artificial neural network models for wind speed prediction. Meteorology and Atmospheric Physics, 109(1-2), 61–72. doi:10.1007/s00703-010-0093-9

Bustos-Vanegas, J. D., Hempel, S., Janke, D., Doumbia, M., Streng, J., & Amon, T. (2019). Numerical simulation of airflow in animal occupied zones in a dairy cattle building. Biosystems Engineering, 186, 100–105. doi:10.1016/j.biosystemseng.2019.07.002

Hempel, S., Menz, C., Pinto, S., Galán, E., Janke, D., Estellés, F., … Amon, T. (2019). Heat stress risk in European dairy cattle husbandry under different climate change scenarios – uncertainties and potential impacts. doi:10.5194/esd-2019-15

Herbut, P., Angrecka, S., & Walczak, J. (2018). Environmental parameters to assessing of heat stress in dairy cattle—a review. International Journal of Biometeorology, 62(12), 2089–2097. doi:10.1007/s00484-018-1629-9

Hoffmann, G., Herbut, P., Pinto, S., Heinicke, J., Kuhla, B., & Amon, T. (2020, in press). Review: Animal-related, non-invasive indicators for determining heat stress in dairy cows. Biosystems Engineering. doi:10.1016/j.biosystemseng.2019.10.017

Ji, B., Banhazi, T., Ghahramani, A., Bowtell, L., Wang, C., & Li, B. (2019). Modelling of heat stress in a robotic dairy farm. Part 2: Identifying the specific thresholds with production factors. Biosystems Engineering. doi:10.1016/j.biosystemseng.2019.11.005

Jovovi??, V., Pandurevi??, T., Va?i??, B., & Erbez, M. (2019). Microclimate parameters and ventilation inside the barns in the lowland region of Bosnia and Herzegovina. Journal of Animal Science of bih, 1(2). doi:10.7251/jas1502014j

Kibler, H.H. Thermal effects of various temperature-humidity combinations on Holstein cattle as measured by eight physiological responses. Environmental physiology and shelter engineering. Res. Bull. Missouri. Agric. Exp. Stn. 1964, 862, 1–42.

Kjellström, E., Nikulin, G., Strandberg, G., Christensen, O. B., Jacob, D., Keuler, K., … Vautard, R. (2018). European climate change at global mean temperature increases of 1.5 and 2???°C above pre-industrial conditions as simulated by the EURO-CORDEX regional climate models. Earth System Dynamics, 9(2), 459–478. doi:10.5194/esd-9-459-2018

Matsoukis, A., & Chronopoulos, K. (2017). Estimating Inside Air Temperature of a Glasshouse Using Statistical Models. Current World Environment, 12(1), 01–05. doi:10.12944/cwe.12.1.01

Milostiviy, R. V., Vysokos, M. P., Kalinichenko, O. O., Vasilenko, T. O., & Milostiv?, D. F. (2017). Productive longevity of European Holstein cows in conditions of industrial technology. Ukrainian Journal of Ecology, 7(3), 169-179. doi: 10.15421/2017_66

Müschner-Siemens, T., Hoffmann, G., Ammon, C., & Amon, T. (2020). Daily rumination time of lactating dairy cows under heat stress conditions. Journal of Thermal Biology, 88, 102484. doi:10.1016/j.jtherbio.2019.102484

Mylostyvyi, R. V., Chernenko, O. M., Izhboldina, O. O., Puhach, A. M., Orishchuk, O. S., & Khmeleva, O. V. (2019a). Ecological substantiation of the normalization of the state of the air environment in the uninsulated barn in the hot period. Ukrainian Journal of Ecology, 9(3), 84–91. doi:10.15421/2019_713

Mylostyvyi, R., & Chernenko, O. (2019). Correlations between Environmental Factors and Milk Production of Holstein Cows. Data, 4(3), 103. doi:10.3390/data4030103

Mylostyvyi, R., & Izhboldina, O. (2019). Climate assessment in modern sustainable cattle barns using temperature-humidity index. New Stages of Development of Modern Science in Ukraine and EU Countries. doi:10.30525/978-9934-588-15-0-134

Mylostyvyi, R., Chernenko, O., Lisna, A. (2019b). Prediction of comfort for dairy cows, depending on the state of the environment and the type of barn. Development of Modern Science: The Experience of European Countries and Prospects for Ukraine. https://doi.org/10.30525/978-9934-571-78-7_53

Poteko, J., Zähner, M., & Schrade, S. (2019). Effects of housing system, floor type and temperature on ammonia and methane emissions from dairy farming: A meta-analysis. Biosystems Engineering, 182, 16–28. doi:10.1016/j.biosystemseng.2019.03.012

Sanchis, E., Calvet, S., Prado, A. del, & Estellés, F. (2019). A meta-analysis of environmental factor effects on ammonia emissions from dairy cattle houses. Biosystems Engineering, 178, 176–183. doi:10.1016/j.biosystemseng.2018.11.017

Schüller, L.-K., Burfeind, O., & Heuwieser, W. (2016). Effect of short- and long-term heat stress on the conception risk of dairy cows under natural service and artificial insemination breeding programs. Journal of Dairy Science, 99(4), 2996–3002. doi:10.3168/jds.2015-10080

Tomczyk, A. M., Bednorz, E., & Pó??rolniczak, M. (2019). The occurrence of heat waves in Europe and their circulation conditions. Geografie, 124(1), 1–17. doi:10.37040/geografie2019124010001

Wang, X., Zhang, G., & Choi, C. Y. (2018). Evaluation of a precision air-supply system in naturally ventilated freestall dairy barns. Biosystems Engineering, 175, 1–15. doi:10.1016/j.biosystemseng.2018.08.005

Yi, Q., Zhang, G., König, M., Janke, D., Hempel, S., & Amon, T. (2018). Investigation of discharge coefficient for wind-driven naturally ventilated dairy barns. Energy and Buildings, 165, 132–140. doi:10.1016/j.enbuild.2018.01.038

 

Share this article