Effects of air temperature, humidity and air pollution on fertility of birch pollen in urban environments


O.V. Bychkova, L.P. Khlebova

We studied effects of environmental factors on pollen fertility of Betula pendula Roth.) in 15 sites of the city of Barnaul (Russia, Altai Territory), differing in traffic intensity. We found that low temperature was more stressful for the development of birch pollen compared to high one. When the temperature drops below +8°C, the amount of sterile pollen in all locations significantly increased regardless of the anthropogenic load, on average exceeding 8%. With an increase in temperature of more than +10 °C, the proportion of sterile pollen also increased, but the jump was not as sharp as in cold weather. The optimum temperature for the formation of fertile pollen grains was in the range of 8–10 °С. The optimal humidity for the development of fertile pollen of B. pendula was 40–45%. The increase in air dryness led to a significant decrease in the quality of pollen grains, the proportion of sterile ones exceeded 8%. According to the transmission coefficient (Keff = 0.1514), the dominant factor in the development of sterile pollen grains of birch was the level of air pollution (concentration of carbon monoxide). Air temperature (Keff = 0.1427) and humidity (Keff = 0.1427) affected equally the quality of pollen. The proposed model makes it possible to predict the level of sterile birch pollen in the conditions of Barnaul depending on the weather conditions of vegetation and on the level of pollutants in the atmosphere.
Key words: Betula pendula Roth.; Pollen sterility; Pollution; Carbon monoxide; Air temperature; Humidity; Information statistics
Batos, B., Veselinović, M., Rakonjac, L., & Miljković, D. (2019). Morphological properties of pollen as bioindicators of deciduous woody species in belgrade parks (Serbia). Poplar, 203, 19-30. Bytnerowicz, A., Omasa, K., & Paoletti, E. (2007). Integrated effects of air pollution and climate change on forests: A northern hemisphere perspective. Environmental Pollution, 147, 438-445. DOI: 10.1016/j.envpol.2006.08.028 Calzoni, G. L., Antognmišík, M., Solenská, M., Mičieta, K., Mišíková, K., & Knasmüller, S. (2006). In situ monitoring of clastogenicity of ambient air in Bratislava, Slovakia using the Tradescantia micronucleus assay and pollen abortion assays. Mutat. Res., 605, 1. DOI:10.1016/j.mrgentox.2005.12.009 Carneiro, M. F. H., Ribeiro, F. Q., Fernandesfilho, F. N., Lobo, D. J. A., Barbosa, Jr. F., Rhoden, C. R., Mauad, T., Saldiva, P. H. N., & Carvalhooliveira, R. (2011). Pollen abortion rates, nitrogen dioxide by passive diffusive tubes and bioaccumulation in tree barks are effective in the characterization of air pollution. Environ. Exp. Bot., 72, 272. DOI: org/10.1016/j.envexpbot.2011.04.001
Chakrabarti, B., Singh, S. D., Nagarajan, S., & Aggarwal, P. K. (2011). Impact of temperature on phenology and pollen sterility of wheat varieties. Australian Journal of Crop Science, 5(8), 1039-1043.
Chehregani, A. H., Majde, A., Moin, M., Golami, M. M., Shariatzadeh, M., & Mohsenzae, F. (2004). Effect of air pollution on some cytogenetic characteristics, structure, viability and proteins of Zinnia elegans pollen grains. Pakistan Journal of Biological Sciences, 7(1), 118-122. doi:10.3923/pjbs.2004.118.122
Cuinica, L. G., Abreu, I., & Esteves da Silva, J. (2014). Effect of air pollutant NO2 on Betula pendula, Ostrya carpinifolia and Carpinus betulus pollen fertility and human allergenicity. Environmental Pollution, 186, 50-55.
Dušička, J., Mičieta, K., Brutovska, E., Samelova, A., & Ščevkova, J. (2013). Aeropalynological aspects in the detection of the quality of air in Bratislava. Ekologia (Bratislava), 32, 1, 39-53. doi:10.2478/eko-2013-0004 Ejsmond, M. J., Ejsmond, A., Banasiak, Ł., Karpin´ska-Kołaczek, M., Kozłowski, J., & Kołaczek, P. (2015). Pollen at high temperature: an adaptation to increased competition on the stigma? Plant Ecology, 216, 1407-1417. DOI: 10.1007 / s11258-015-0519-z
El-Khatib, A. A., El-Shanawany, A. A., & El-Amery, E. M. (2016). Urban tree leaf as bioindicator for air pollution around superphosphate fertilizers plant, Upper Egypt. Journal of Ecology of Health & Environment, 4(2), 95-101. Fedorova, A. I., & Nikol’skaya, A. N. (2001). Praktikum po ehkologii i okhrane okruzhayushchej sredy [Workshop on ecology and environmental protection], Moscow, Vlados Publ. (in Russian).
Ghorani-Azam, A., Riahi-Zanjani, B., & Balali-Mood, M. (2016). Effects of air pollution on human health and practical measures for prevention in Iran. J. Res. Med. Sci., 21, 65. DOI: 10.4103 / 1735-1995. 189646
Gorbov, S. N., Bezuglova, O. S., Varduni, T. V., Gorovcov, A. V., Tagiverdiev, S. S., & Gil'debrant, Yu. A. (2015). Genotoksichnost' i zagryaznenie tyazhelymi metallami estestvennyh i antropogenno-preobrazovannyh pochv Rostova-na-Donu. Pochvovedenie, 12, 1519. (in Russian).
Gottardini, E., Cristofori, A., Cristofolini, F., Maccherini, S., & Ferretti M. (2008). Ambient levels of nitrogen dioxide (NO2) may reduce pollen viability in Austrian pine (Pinus nigra Arnold) trees – Correlative evidence from a field study. Science of the Total Environment, 402, 2-3, 299-305. Gregušková, E., & Mičieta, K. (2013). Phytoindication of the ecogenotoxic effects of vehicle emissions using pollen abortion test with native flora. Polish Journal of Environmental Studies, 22, 4, 1069-1076.
Jóźwiak, M. A., & Jóźwiak, M. (2014). Bioindication as challenge in modern environmental protection. Ecol Chem Eng S., 21(4), 577-591. DOI: https://doi.org/10.1515/eces-2014-0041
Kedves, M., Pardutz, A., & Varga, B. (2002). Experimental investigations of the pollen grains of Quercus robur L. Taiwania, 47(1), 43-53. DOI:10.6165 / tai.2002.47(1).43
Khlebova, L. P., & Bychkova, O. V. (2016). Development of Pinus sylvestris L. male gametophyte in urban environment. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 1, 390-408. (in Russian).
Kudryavs'ka, T. B., & Dichko, A. O. (2014). Metod ocеnki ta prognozuvannya vplivu tehnogennogo zabrudnennya na povеtrya urboekosistemi. Vostochno-Evropeiskii zhurnal peredovyh tehnologii, 1/10 (67), 4-7. (in Ukraine).
Mičieta, K., & Murín, G. (2007). Wild plant species in bio-indication of radioactive-contaminated sites around Jaslovské Bohunice nuclear power plant in the Slovak Republic. Journal of Environmental Radioactivity, 93, 26. DOI:10.1016 / j. jenvrad.2006.11.006
Mišík, M., Mičieta, K., Solenská, M., Mišíková, K., Pisarčíková, H., & Knasmüller, S. (2007). In situ biomonitoring of the genotoxic effects of mixed industrial emissions using the Tradescantia micronucleus and pollen abortion tests with wild life plants: Demonstration of the efficacy of emission controls in an eastern European city. Environmental Pollution, 145, 459. DOI:10.1016 / j. envpol.2006.04.026 Nowak, D. J., Hirabayashi, S., Bodine, A., & Greenfield, E. (2014). Tree and forest effects on air quality and human health in the United States. Environmental Pollution, 193, 119-129. DOI: 10.1016/j.envpol.2014.05.028
Onete, M., Pop, O. G., & Gruira, R. (2010). Plants as indicators of environmental conditions of urban spaces from central parks of Bucharest. Environmental Engineering and Management Journal, 9(12), 1637-1645. DOI: 10.30638 / eemj.2010.225
Pausheva, Z. P. (1988). Praktikum po tsitologii rastenij [Practical course on plant cytology]. Moscow, Agropromizdat Publ. (in Russian).
Puzachenko, Yu. G., & Moshkin, А. V. (1969). Informationlogical analysis in medical-geographical studies. Itogi nauki. Meditsinskaya geografiya, 3, 5-74. (in Russian).
Samecka-Cymerman, A., Kolon, K., & Kempers, A. (2011). Taxus baccata as a bioindicator of urban environmental pollution. Polich Journal of Environmental Studies, 20(4), 1021-1027.
Stojnić, S., Kebert, M., Drekić, M., Galić, Z., Kesić, L., Tepavac, A., & Orlović, S. (2019). Heavy metals content in foliar litter and branches of Quercus petraea (Matt.) Liebl. and Quercus robur L. observed at two icp forests monitoring plots. Southeast Eur for, 10(2): early view. DOI:https://doi.org/10.15177/seefor.19-11
Storme, N. D., & Geelen, D. (2014). The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. Plant, Cell and Environment, 37, 1-18. DOI: 10.1111/pce.12142
Tret'yakova, I. N., & Noskova, N. E. (2004). Pyl'ca sosny obyknovennoi v usloviyah ekologicheskogo stressa. Ekologiya, 1, 26. (in Russian).


Share this article