Effects of selenium compounds and toxicant action on oxidative biomarkers in quails

Abstract

S.I. Tsekhmistrenko, V.S. Bityutskyy, O. S. Tsekhmistrenko, O.M. Melnichenko, V.M. Kharchyshyn, N.O. Tymoshok, N.V. Ponomarenko, S.A. Polishchuk, N.V. Rol, M.M. Fedorchenko, Yu. O. Melnichenko, H.V. Merzlova, O.P. Shulko, A.A. Demchenko

We studied the lipid peroxidation processes, activity of antioxidant defense enzymes, energy metabolism in blood, liver, and kidney of quails under modeling of cadmium loading and correction of these processes by action of Selenium and its inorganic (sodium selenite) and organic (selenite) compounds. The feeding of the quails with the Sel-Plex preparation in the compound feed of 0.15 mg/kg of dry feed promotes the activation of anaerobic and aerobic processes in the cytoplasm and mitochondria of liver cells. Increased activity of antioxidant enzymes, in particular superoxide dismutase (SOD), catalase and glutathione peroxidase (the active center of which includes the redox-active selenocysteine residue). The use of Selenium compounds increases the total lipid content of the quail kidneys. This increases the activity of glutathione-dependent enzymes, which include Selenium that reduced the lipoperoxidation products content and restored the activity of SOD and catalase. We established that the intake of cadmium sulfate caused intensification of the processes of peroxide oxidation, which changed the activity of antioxidant enzymes of SOD and catalase in quail kidneys and livers. Under cadmium loading, the pathological effect of the toxicant was counterbalanced by the use of Selenium compounds and the general physiological state returned to the control level. This increased the antioxidant status of the quail organism and reduced the negative impact of cadmium sulfate. We proposed the green synthesis method for safe and environmental-friendly generation of the selenium nanoparticles. We proved that adding nano-selenium (Nano-Se) to the quails’ feed increased the safety of livestock number and the average daily growth. We also definitely recommend using Selenium compounds for the correction of structural and metabolic poultry disorders caused by effects of heavy metals.

Keywords: Selenium; Cadmium; Superoxide dismutase; Glutathione peroxidase; Quails; Antioxidant system; Energy metabolism; Liver; Kidney; Blood
References

Abu-El-Zahab, H. S., Hamza, R. Z., Montaser, M. M., El-Mahdi, M. M., & Al-Harthi, W. A. (2019). Antioxidant, antiapoptotic, antigenotoxic, and hepatic ameliorative effects of L-carnitine and selenium on cadmium-induced hepatotoxicity and alterations in liver cell structure in male mice. Ecotoxicology and environmental safety, 173, 419-428. https://doi.org/10.1016/j.ecoenv.2019.02.041

Brigelius-Flohé, R., & Flohé, L. (2019). Regulatory phenomena in the glutathione peroxidase superfamily. Antioxidants & Redox Signaling. http://doi.org/10.1089/ars.2019.7905

Çeribaşı, S., Türk, G., Özçelik, M., Doğan, G., Çeribaşı, A. O. et al. (2020). Negative effect of feeding with high energy diets on testes and metabolic blood parameters of male Japanese quails, and positive role of milk thistle seed. Theriogenology, 144, 74-81. https://doi.org/10.1016/j.theriogenology.2019.12.021

del Puerto, M., Olivero, R., Terevinto, A., Saadoun, A., & Cabrera, M. C. (2016). Dietary organic and inorganic selenium on liver glycogen and lactate, pHu, color and drip loss of chicken pectoralis and gastrocnemius muscles. Open Journal of Animal Sciences, 6(1), 59-67. DOI: https://doi.org/10.4236/ojas.2016.61008

Fotakis, G., & Timbrell, J. A. (2006). Modulation of cadmium chloride toxicity by sulphur amino acids in hepatoma cells. Toxicology in vitro, 20(5), 641-648. https://doi.org/10.1016/j.tiv.2005.11.005

Hackler, J., Wisniewska, M., Greifenstein-Wiehe, L., Minich, W. B., Cremer, M. et al. (2020). Copper and selenium status as biomarkers of neonatal infections. Journal of Trace Elements in Medicine and Biology, 58, 126437. https://doi.org/10.1016/j.jtemb.2019.126437H

Hosnedlova, B., Kepinska, M., Skalickova, S., Fernandez, C., Ruttkay-Nedecky, B. et al. (2018). Nano-selenium and its nanomedicine applications: a critical review. International journal of nanomedicine, 13, 2107–2128. doi: https://doi.org/10.2147/IJN.S157541

Ibor, O. R., Adeogun, A. O., Regoli, F., & Arukwe, A. (2019). Xenobiotic biotransformation, oxidative stress and obesogenic molecular biomarker responses in Tilapia guineensis from Eleyele Lake, Nigeria. Ecotoxicology and environmental safety, 169, 255–265. https://doi.org/10.1016/j.ecoenv.2018.11.021

Katarzyna, B., Taylor, R. M., Szpunar, J., Lobinski, R., & Sunde, R. A. (2020). Identification and determination of selenocysteine, selenosugar, and other selenometabolites in turkey liver. Metallomics. https://doi.org/10.1039/D0MT00040J

Khoso, P. A., Yang, Z., Liu, C., & Li, S. (2015). Selenium deficiency downregulates selenoproteins and suppresses immune function in chicken thymus. Biological trace element research, 167(1), 48-55. https://doi.org/10.1007/s12011-015-0282-y

Khoso, P. A., Zhang, Y., Yin, H., Teng, X., & Li, S. (2019). Selenium deficiency affects immune function by influencing selenoprotein and cytokine expression in chicken spleen. Biological trace element research, 187(2), 506-516. https://doi.org/10.1007/s12011-018-1396-9

Kuria, A., Fang, X., Li, M., Han, H., He, J. et al. (2020). Does dietary intake of selenium protect against cancer? A systematic review and meta-analysis of population-based prospective studies. Critical reviews in food science and nutrition, 60(4), 684-694. https://doi.org/10.1080/10408398.2018.1548427

Lew, S. Q., & Radhakrishnan, J. (2020). Chronic Kidney Disease and Gastrointestinal Disorders. In Chronic Renal Disease (pp. 521-539). Academic Press. https://doi.org/10.1016/B978-0-12-815876-0.00033-4

Li, B., Li, W., Tian, Y., Guo, S., Qian, L., Xu, D., & Cao, N. (2020). Selenium-Alleviated Hepatocyte Necrosis and DNA Damage in Cyclophosphamide-Treated Geese by Mitigating Oxidative Stress. Biological trace element research, 193(2), 508-516. https://doi.org/10.1007/s12011-019-01717-3

Liu, J., Wang, S., Zhang, Q., Li, X., & Xu, S. (2020). Selenomethionine alleviates LPS-induced chicken myocardial inflammation by regulating the miR-128-3p-p38 MAPK axis and oxidative stress. Metallomics. 12, 54-64 DOI: https://doi.org/10.1039/C9MT00216B

Mohapatra, P., Swain, R.K., Mishra, S.K., Behera, T., Swain, P. et al. (2014). Effects of dietary nano-selenium on tissue selenium deposition, antioxidant status and immune functions in layer chicks. International Journal of Pharmacology, 10(3), 160–167. DOI: https://doi.org/10.3923/ijp.2014.160.167

Morris, K.M., Hindle, M.M., Boitard, S., Burt, D.W., Danner, A.F. et al. (2019). The quail as an avian model system: its genome provides insights into social behaviour, seasonal biology and infectious disease response. bioRxiv, 575332. https://doi.org/10.1101/575332

Ospondpant, D., Phuagkhaopong, S., Suknuntha, K., Sangpairoj, K., Kasemsuk, T. et al. (2019). Cadmium induces apoptotic program imbalance and cell cycle inhibitor expression in cultured human astrocytes. Environmental toxicology and pharmacology, 65, 53-59. https://doi.org/10.1016/j.etap.2018.12.001

Polishchuk, V.M., Tsekhmistrenko, S.I., Polishchuk, S.A., Ponomarenko, N.V., Rol, N.V. et al. (2020). Age-related characteristics of lipid peroxidation and antioxidant defense system of ostriches (Struthio camelus domesticus). Ukrainian Journal of Ecology. 10(1), 168–174, doi: https://doi.org/10.15421/2020_29

Rahman, Z., & Singh, V. P. (2019). The relative impact of toxic heavy metals (THMs)(arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environmental monitoring and assessment, 191(7), 419. https://doi.org/10.1007/s10661-019-7528-7

Schomburg, L. (2019). The other view: the trace element selenium as a micronutrient in thyroid disease, diabetes, and beyond. Hormones, 1-10. https://doi.org/10.1007/s42000-019-00150-4

Shekhar, S., Jain, S., & Priya, P. (2019). Assessment of serum antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase in oral submucous fibrosis. Journal of Advanced Medical and Dental Sciences Research, 7(1), 1-5. doi: 10.21276/jamdsr

Shokraneh, M., Sadeghi, A. A., Mousavi, S. N., Esmaeilkhanian, S., & Chamani, M. (2020). Effects of in ovo injection of nano-selenium and nano-zinc oxide and high eggshell temperature during late incubation on antioxidant activity, thyroid and glucocorticoid hormones and some blood metabolites in broiler hatchlings. Acta Scientiarum. Animal Sciences, 42. https://doi.org/10.4025/actascianimsci.v42i1.46029

Spallholz, J. E. (2019). Selenomethionine and Methioninase: Selenium Free Radical Anticancer Activity. In Methionine Dependence of Cancer and Aging (199-210). Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8796-2_15

Torres, S.K., Campos, V.L., León, C.G., Rodríguez-Llamazares, S.M., Rojas, S.M. et al. (2012). Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity. Journal of Nanoparticle Research, 14(11), 1236. https://doi.org/10.1007/s11051-012-1236-3

Tsekhmistrenko, O.S., Tsekhmistrenko, S.I., Bityutskyy, V.S., Melnichenko, O.M., & Oleshko, O.A. (2018a). Biomimetic and antioxidant activity of nanocrystalline cerium dioxide. World of Medicine and Biology, 14(63), 196–201. DOI 10.267254/2079-8334-2018-1-63-196-201

Tsekhmistrenko, S.I., Bityutskyy, V.S., Tsekhmistrenko, O.S., Polishchuk, V.M., Polishchuk, S.A. et al. (2018b). Enzyme-like activity of nanomaterials. Regulatory Mechanisms in Biosystems, 9(3), 469–476. https://doi.org/10.15421/021870

Tsekhmistrenko, S.I., Bityutskyy, V.S., Tsekhmistrenko, O.S., Horalskyi, L.P., Tymoshok, N.O. et al. (2020). Bacterial synthesis of nanoparticles: A green approach. Biosystems Diversity, 28(1), 3–11 doi: https://doi.org/10.15421/012002

Tsekhmistrenko, О., Bityutskyy, V., Tsekhmistrenko, S., Melnychenko, O., Tymoshok, N. et al. (2019). Use of nanoparticles of metals and non-metals in poultry farming. Animal Husbandry Products Production and Processing, 2, 113–130. (In Ukraine) https://doi.org/10.33245/2310-9289-2019-150-2-113-130

Tymoshok, N.O., Kharchuk, M.S., Kaplunenko, V.G., Bityutskyy, V.S., Tsekhmistrenko, S.I. et al. (2019). Evaluation of effects of selenium nanoparticles on Bacillus subtilis. Regulatory Mechanisms in Biosystems, 10(4), 544–552. https://doi.org/10.15421/021980

Van de Water, B., De Graauw, M., Le Dévédec, S., & Alderliesten, M. (2006). Cellular stress responses and molecular mechanisms of nephrotoxicity. Toxicology letters, 162(1), 83-93. https://doi.org/10.1016/j.toxlet.2005.10.014

Wang, H., Zhang, J., & Yu, H. (2007). Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radical Biology and Medicine, 42(10), 1524-1533. https://doi.org/10.1016/j.freeradbiomed.2007.02.013

Wang, X., Jin, Z., Chen, M., Duan, D., Lammi, M. J. et al. (2019). Inhibiting the aberrant activation of Wnt/β‐catenin signaling by selenium supplementation ameliorates deoxynivalenol‐induced toxicity and catabolism in chondrocytes. Journal of Cellular Physiology, 235, 4434–4442. https://doi.org/10.1002/jcp.29319

Xia, Y., Xiao, M., Zhao, M., Xu, T., Guo, M. et al. (2020). Doxorubicin-loaded functionalized selenium nanoparticles for enhanced antitumor efficacy in cervical carcinoma therapy. Materials Science and Engineering: C, 106, 110100. https://doi.org/10.1016/j.msec.2019.110100

Xu, J., Gong, Y., Sun, Y., Cai, J., Liu, Q. et al. (2019). Impact of selenium deficiency on inflammation, oxidative stress, and phagocytosis in mouse macrophages. Biological Trace Element Research, 1-7. https://doi.org/10.1007/s12011-019-01775-7

Yang, J., Hamid, S., Liu, Q., Cai, J., Xu, S., & Zhang, Z. (2017a). Gene expression of selenoproteins can be regulated by thioredoxin (Txn) silence in chicken cardiomyocytes. Journal of inorganic biochemistry, 177, 118-126. https://doi.org/10.1016/j.jinorgbio.2017.08.027

Yang, J., Zhang, Y., Hamid, S., Cai, J., Liu, Q. et al. (2017b). Interplay between autophagy and apoptosis in selenium deficient cardiomyocytes in chicken. Journal of inorganic biochemistry, 170, 17-25.

Yildirim, S., Ozkan, C., Huyut, Z., & Çınar, A. (2019). Detection of Se, vit. E, vit. A, MDA, 8-OHdG, and CoQ10 levels and histopathological changes in heart tissue in sheep with white muscle disease. Biological trace element research, 188(2), 419-423. https://doi.org/10.1007/s12011-018-1434-7

Zhai, X., Zhang, C., Zhao, G., Stoll, S., Ren, F., & Leng, X. (2017). Antioxidant capacities of the selenium nanoparticles stabilized by chitosan. Journal of nanobiotechnology, 15(1), 4. https://doi.org/10.1186/s12951-016-0243-4

Zhang, R. K., Wang, P., Lu, Y. C., Lang, L., Wang, L., & Lee, S. C. (2019). Cadmium induces cell centrosome amplification via reactive oxygen species as well as endoplasmic reticulum stress pathway. Journal of cellular physiology, 234(10), 18230-18248. https://doi.org/10.1002/jcp.28455

Zhu, Q. L., Guo, S.N., Wen, F., Zhang, X.L., Wang, C.C. et al. (2019). Transcriptional and physiological responses of Dunaliella salina to cadmium reveals time-dependent turnover of ribosome, photosystem, and ROS-scavenging pathways. Aquatic toxicology, 207, 153-162. https://doi.org/10.1016/j.aquatox.2018.12.007

Share this article