Enrichment of field crops biodiversity in conditions of climate changing

Abstract

S. Kalenska, O. Yeremenko, N. Novictska, A. Yunyk, L. Honchar, V. Cherniy, T. Stolayrchuk, V. Kalenskyi, O. Scherbakova, A. Rigenko

Gradual introduction into the culture of new species requires introduction of appropriate technologies of their cultivation, with taking into account varietal characteristics, species adaptation to the conditions of cultivation, analysis of yield and quality formation characteristics, taking into account content of biologically valuable components, depending on technological factors and environmental factors. The dynamics of the weather changes in the Right-bank Forest-steppe of Ukraine during the period is analyzed 2004-2017. The analysis of weather conditions showed a tendency the air temperature increasing and decrease of rainfall amount during period of spring crops vegetation compare with the average annual data. Weather conditions had their own peculiarities, sometimes they were extreme, which adversely affected on growth, development and productivity of plants was noted a tendency of increasing amount of active and effective temperatures during the growing season, what necessitates expansion of field crops biodiversity, especially spring crops. Identified cultures: lentil (Lens culinaris), chick-pea (Cicer arietinum), chufa (Camelina sativa); triticale (Triticale); millet (Panicum miliaceum); sorghum (Sorghum bicolor); white mustard (Sinapis alba); brown mustard (Brassica juncea); coriander (Coriandrum sativum) that, due to biological and technological characteristics, are suitable for introduction into production. Installation of the elements of adaptive technologies for the cultivation of scarce field crops. Developed elements of adaptive cultivating technology for species, introducted into the field culture, contribute to reducing the influence of uncontrolled factors on productivity formation, the role of species increasing, sustainable development of formed agrocenoses, improving the quality of raw materials and food safety. Analysis of weather conditions and the correspondence of biological characteristics of rare cultures in Ukraine have allowed distinguish cultures that have high production efficiency.

Keywords: Less common crops; weather conditions; adaptive technology; yield

References:
Altieri, M. A. (2009). Agroecology, small farms, and food sovereignty. Monthly review, 61(3), 102-113.
Beach, R. H., DeAngelo, B. J., Rose, S., Li, C., Salas, W., & DelGrosso, S. J. (2008). Mitigation potential and costs for global agricultural greenhouse gas emissions 1. Agricultural Economics, 38(2), 109-115.
CNA, National Security and the Threat of Climate Change (2007). http://security and climate.cna.org. Accessed 9.6.2011.
Collins, N. C., Tardieu, F., & Tuberosa, R. (2008). Quantitative trait loci and crop performance under abiotic stress: where do we stand?. Plant physiology, 147(2), 469-486. 
Daba, K., Tar’an, B., Bueckert, R., & Warkentin, T. D. (2016). Effect of temperature and photoperiod on time to flowering in Chickpea. Crop Science, 56(1), 200-208. DOI: 10.2135/cropsci2015.07.0445.
Bot, A., & Benites, J. (2005). The importance of soil organic matter: Key to drought-resistant soil and sustained food production (No. 80). Food & Agriculture Org.
FAO. FAOSTAT. (2011). http://faostat.fao.org/ site/339/default.aspx. Accessed 9.6.2011.
French, R. J., & Schultz, J. E. (1984). Water use efficiency of wheat in a Mediterranean-type environment. I. The relation between yield, water use and climate. Australian Journal of Agricultural Research, 35(6), 743-764. 
Fuhrer, J. (2003). Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agriculture, Ecosystems & Environment, 97(1-3), 1-20.
Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L. H., Izaurralde, R. C., Ort, D., Thomson, A. M., & Wolfe, D. (2011). Climate impacts on agriculture: implications for crop production. Agronomy journal, 103(2), 351-370. 
Heller, N. E., & Zavaleta, E. S. (2009). Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biological conservation, 142(1), 14-32.
Lobell, D. B., & Asner, G. P. (2003). Climate and management contributions to recent trends in US agricultural yields. Science, 299(5609), 1032-1032.
Lobell, D. B., & Field, C. B. (2007). Global scale climate-crop yield relationships and the impacts of recent warming. Environmental research letters, 2(1), 014002.
Lobell, D. B., Field, C. B., Cahill, K. N., & Bonfils, C. (2006). Impacts of future climate change on California perennial crop yields: Model projections with climate and crop uncertainties. Agricultural and Forest Meteorology, 141(2-4), 208-218.
Makareviciene, V., Gumbyte, M., Yunik, A., Kalenska, S., Kalenskii, V., Rachmetov, D., & Sendzikiene, E. (2013). Opportunities for the use of chufa sedge in biodiesel production. Industrial crops and products, 50, 633-637.
Malla, G. (2008). Climate change and its impact on Nepalese agriculture. Journal of agriculture and environment, 9, 62-71.
Mooney, H., Larigauderie, A., Cesario, M., Elmquist, T., Hoegh-Guldberg, O., Lavorel, S., Mace, G., Palmer, M., Scholes, R., & Yahara, T. (2009). Biodiversity, climate change, and ecosystem services. Current Opinion in Environmental Sustainability, 1(1), 46-54.
Mundial, B. (2011). Climate-Smart Agriculture: Increased Productivity and Food Security, Enhanced Resilience and Reduced Carbon Emisiones for Sustainable Development. Banco Mundial, Washington DC.
World Bank. (2012). Turn Down the Heat: Why a 4 °C Warmer World Must Be Avoided.
Olesen, J. E., & Bindi, M. (2002). Consequences of climate change for European agricultural productivity, land use and policy. European journal of agronomy, 16(4), 239-262.
Martínez-Hidalgo, P., & Hirsch, A. M. (2017). The nodule microbiome: N2-fixing rhizobia do not live alone. Phytobiomes, 1(2), 70-82.
Rakhmetov, D. (2017). Scientific and innovative principles of introduction, selection and use of useful plants in Ukraine. Forestry and Gardening, 13. http:// http://journals.nubip.edu.ua/index.php/Lis/article/view/9778 (in Ukraine).
Rakhmetov, D., Kalenska, S., & Rakhmetova, S. (2016). Introduction of new and of rare medicinal plants in Ukraine. In: III International Scientific Conference. Berezotocha, 71-77 (in Ukraine).
Rosenberg, N. J. (1992). Adaptation of agriculture to climate change. Climatic Change, 21(4), 385-405.
Sala, O., Chapin, F., Armesto, J., Berlow, E. & Bloomfield, J. (2000). Global biodiversity scenarios for the year 2100. science, 287(5459), 1770-1774.
Schwartz, M. W. (1992). Potential effects of global climate change on the biodiversity of plants. The Forestry Chronicle, 68(4), 462-471.
Sendžikienė, E., Makarevičienė, V., & Kalenska, S. (2012). Exhaust emissions from the engine running on multi-component fuel. Transport, 27(2), 111-117.
Shcherbakova, E. N., Shcherbakov, A. V., Andronov, E. E., Gonchar, L. N., Kalenskaya, S. M., & Chebotar, V. K. (2017). Сombined pre-seed treatment microbial inoculans with and Mo nanoparticles changes composition of root and rhizosphere microbiome structure of chickpea (Cicer arietinum L.) plants. Simbiosis. 13. DOI 10.1007/s13199-016-0472-1. 
Taran, N., Batsmanova, L., Kosyk, O., Smirnov, O., Kovalenko, M., Honchar, L., & Okanenko, A. (2016). Colloidal Nanomolybdenum Influence upon the Antioxidative Reaction of Chickpea Plants (Cicer arietinum L.). Nanoscale research letters, 11(1), 476.
Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418(6898), 671.
Tilman, D., Fargione, J., Wolff, B., D'Antonio, C., Dobson, A., Howarth, R., Schindler, D., Schlesinger, W., Simberloff, D., & Swackhamer, D. (2001). Forecasting agriculturally driven global environmental change. Science, 292(5515), 281-284.
Tubiello, F. N., Soussana, J. F., & Howden, S. M. (2007). Crop and pasture response to climate change. Proceedings of the National Academy of Sciences, 104(50), 19686-19690.
Yeo, A. (1998). Predicting the interaction between the effects of salinity and climate change on crop plants. Scientia Horticulturae, 78(1-4), 159-174.
Zaimenko, N. V., Cherevchenko, T. M., Gaponenko, M. B., & Rakhmetov, G. B. (2015). Plant introduction, conservation and enrichment of biodiversity in MM Gryshko National Botanical Garden of the NAS of Ukraine. Plant Introduction, 68, 3-9.
 

Share this article