Features of leaf mesostructure rearrangement and redistribution of assimilates of sweet pepper plants under the action of gibberellic acid in connection with crop productivity

Abstract

V.G. Kuryata, O.V. Kushnir , O.O. Kravets, I.V. Poprotska, L.A. Golynova, O.A. Shevchuk, O.O. Khodanitska, O.O. Tkachuk, N.V. Baiurko

plants (Capsicum annuum L.) sv. Antey in connection with crop production. The donor-acceptor system of plants was rearranged under the treatment of 0.005 % aqueous growth regulator gibberellic acid solution during the budding period. As a result, the amount of leaf dry and fresh weight and leaf surface area increased, a more powerful donor sphere of the plant was formed. The internal structure of leaves changed under the influence of growth regulator. The leaf thickness of treated plants and the thickness of the upper and lower epidermis, the primary photosynthetic tissues - chlorenchyma, columnar and spongy assimilative size parenchyma cells increased — an important coenotic indicator of plants - leaf index was increased. At the same time, the growth regulator did not affect the chlorophyll content of leaves. Mesostructure rearrangement enhanced the indicator of specific leaf area density and net photosynthetic productivity characterized by the photosynthetic productivity of the unit leaf surface. More photoassimilates (free sugars and starch) accumulated in the leaves of treated plants compared to the control that ensured the growth and formation of fruits. The enhancement of total leaf area intensified gross photosynthetic productivity and phytocenosis, increasing the yield of sweet pepper plants.

Keywords: sweet pepper (Capsicum annuum L.), gibberellic acid, donor-acceptor system, mesostructure, productivity.
 

References

 

Abeledo, L.G., Savin, R., & Slafer, Gustavo A. (2020) Maize senescence under contrasting source-sink ratios during the grain filling period. Environmental and Experimental Botany, 180: 104263. doi: 10.1016/j.envexpbot.2020.104263

Ahammed, G.J., Gantait, S., Mitra, M., Yang, Y., Li, X. (2020). Role of ethylene crosstalk in seed germination and early seedling development: A review. Plant Physiology and Biochemistry: PPB. 151: 124-131. doi: 10.1016/j.plaphy.2020.03.016.

AOAC (2010). Official Methods of Analysis of Association of Analytical Chemist International (18th ed.). Association of Analytical Chemist. Gaithersburg, Maryland, USA.

Bai, P., Bai, R., & Jin, Y. (2016) Characteristics and coordination of source-sink relationships in super hybrid rice. Open Life Sciences, 11(1): 470–75. DOI: https://doi.org/10.1515/biol-2016-0061

Bonelli, L.E., Monzon, J. P., Cerrudo, A., Rizzalli, R. H., &  Andrade, F. H. (2016). Maize grain yield components and source-sink relationship as affected by the delay in sowing date. Field Crops Research, 198, 215-225. doi:10.1016/j.fcr.2016.09.003

Carvalho, M. E. A., Castro, C. P. R., Castro F. M. V., & Mendes A. C. C. (2016). Are plant growth retardants a strategy to decrease lodging and increase yield of sunflower. Comunicata Scientiae, 7 (1), 154-164. doi: 10.14295/CS.v7i1.1286.

Fagherassi, A.F., Grimaldi, F., Kretzschmar, A.A., Rufato, L., Lucchi, P., Maltoni, M.L., Faedi, W., & Baruzzi, G. (2017). Effects of GA3 on vegetative growth in strawberry. Acta Hortic. 1156, 497-500. DOI:10.17660/ Acta Hortic. 2017.1156.73

Hedden, P., & Thomas, S. G. (2016). The gibberellins. John Wiley & Sons. doi:10.1002/9781119210436.

Khodanitska, O.O., Kuryata, V.G., Shevchuk, O.A., Tkachuk, O.O., Poprotska, I.V. (2019). Effect of treptolem on morphogenesis and productivity of linseed plants. Ukrainian Journal of Ecology, 9(2), 119-126.

Koutroubas, S. D., & Damalas, C. A. (2016). Morpho-physiological responses of sunflower to foliar applications of chlormequatchloride (CCC). 2016. Bioscience Journal, 32(6), 1493-1501. doi: 10.14393/BJ-v32n6a2016-33007.

Kuriata, V.G., Rohach, V.V., Rohach, T.I., Khranovska, T.V. (2016). The use of antigibberelins with different mechanisms of action on morphogenesis and production process regulation in the plant Solanum melongena (Solanaceae). Visnyk of Dnipropetrovsk University, Biology, Ecology, 24(1), 230-233. doi.org/10.15421/011628

Kuryata, V. G. & Polyvanyi, S.V. (2018) Formation and functioning of source-sink relation system of oil poppy plants under treptolem treatment towards crop productivity. Ukrainian journal of ecology, 8(1), 11-20. doi: 10.15421/2017_182

Kuryata, V.G., & Golunova, L.?. (2018). Peculiarities of the formation and functioning of soybean-rhizobial complexes and the productivity of soybean culture under the influence of retardant of paclobutrazol. Ukrainian Journal of Ecology, 8(3), 98–105.

Kuryata, V.G., & Khodanitska, O.O. (2018). Features of an atomical structure, formation and functioning of leaf apparatus and productivity of linseed under chlormequat chloride treatment. Ukrainian Journal of Ecology, 8(1), 918–926. doi: 10.15421/2018_294

Kuryata, V.G., Golunova, L.A., Poprotska, I.V., & Khodanitska, O.O. (2019b). Symbiotic nitrogen fixation of soybean-rhizobium complexes and productivity of soybean culture as affected by the retardant chlormequat chloride. Ukrainian Journal of Ecology, 9(2), 5-13.

Kuryata, V.G., Polyvanyi, S.V., Shevchuk, O.A., & Tkachuk, O.O. (2019 a). Morphogenesis and the effectiveness of the production process of oil poppy under the complex action of retardant chlormequat chloride and growth stimulant treptolem. Ukrainian Journal of Ecology, 9(1), 127-134.

Kuryata, V.G., Rogach, V.V., Buina, O.I., Kushnir O.V. (2017). Impact of gibberelic acid and tebuconazole on formation of the leaf system and functioning of donor – acceptor plant system of solanaceae vegetable crops. Regulatory Mechanisms in Biosystems, 8(2), 162-168. doi.org/10.15421/021726.

Liu X, Herbert, S.J., Baath, K., & Hashemi, A.M. (2006). Soybean (Glycine max) seed growth characteristics in response to light enrichment and shading. Environment, 52, 178–85.

Macedo, W. R., Araujo, D. K., Santos, V. M., Camargo, G. M., & Castroand, P. R. (2017). Plant growth regulators on sweet sorghum: physiological and nutritional value analysis. Comunicata Scientiae, 8(1), 170-175. DOI: 10.14295/CS.v8i1.1315.

Panyapruek, S., Sinsiri, W., Sinsiri, N., Arimatsu, P., & Polthanee, A. (2016) Effect of paclobutrazol growth regulator on tuber production and starch quality of cassava (Manihot esculenta Crantz). Asian Journal of Plant Sciences, 15(1-2), 1-7. doi:10.3923/ajps.2016.1.7.

Pavlista, A. D. (2013). Influence of foliar-applied growth retardants on russet burbank potato tuber production. Am. J. Potato, 90, 395-401. doi: 10.1007/s12230-013-9307-2.

Peng, D., Chen, X., Yin, Y., Lu, K., Yang, W., Tang, Y., & Wang, Z. (2014). Lodging resistance of winter wheat (Triticum aestivum L.): Lignin accumulation and its related enzymes activities due to the application of paclobutrazol or gibberellin acid. Field Crops Research, 157, 1–7. doi:10.1016/j.fcr.2013.11.015. 

Rademacher, W. (2016). ?hemical regulators of gibberellin status and their application in plant production. Annual Plant Reviews, 49, 359-403. doi: 10.1002/9781119312994.apr0541.

Rogach, V. V., Kravets, O. O., Buina, O. I., & Kuryata, V. G. (2018). Dynamic of accumulation and redistribution of various carbohydrate forms and nitrogen in organs of tomatoes under treatment with retardants. Regulatory Mechanisms in Biosistems, 9(2), 293-299. doi: 10.15421/021843.

Shevchuk, O.A., Tkachuk, O.O., Kuryata V.G., Khodanitska, O.O., & Polyvanyi, S.V. (2019). Features of leaf photosynthetic apparatus of sugar beet under retardants treatment. Ukrainian Journal of Ecology, 9 (1), 115-120.

Sugiura, D., Sawakami, K., Kojim, M., Sakakibara, H., Terashima, I., & Tateno, M. (2015).  Roles of gibberellins and cytokinins in regulation of morphological and physiological traits in Polygonum cuspidatum responding to light and nitrogen availabilities. Functional Plant Biology,  42(4), 397–409.

Tsygankova, V., Andrusevich, Y.V., Shtompel, O.I., Kopich, V.M., Panchyshyn, S.Y., Vydzhak, R.M., & Brovarets, V.S. (2019). Application of pyrazole derivatives as new substitutes of auxin IAA to regulate morphometric and biochemical parameters of wheat (Triticum aestivum L.) seedlings. Journal of Advances in Agriculture, 10, 1772–86.

Yang, L., Yang, D., Yan, X., Cui, L., Wang, Z., & Yuan, H. (2016). The role of gibberellins in improving the resistance of tebuconazole-coated maize seeds to chilling stress by microencapsulation. Scientific Reports, 60, 1-12. doi:10.1038/srep35447.

Yu, S.M., Lo, S.F., & Ho, T.D. (2015). Source-sink communication: regulated by hormone, nutrient, and stress cross-signaling. Trends in Plant Science, 20(12), 844-857. doi: 10.1016/j.tplants.2015.10.009.

Zhang, W., Xu, F., Hua, C., & Cheng, S. (2013). Effect of chlorocholine chloride on chlorophyll, photosynthesis, soluble sugar and flavonoids of Ginkgo biloba. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41(1), 97-103. doi: 10.15835/nbha4118294.

Share this article