Features of the fruit epicuticular waxes of Prunus persica cultivars and hybrids concerning pathogens susceptibility

Abstract

Y. V. Lykholat, N. O. Khromykh, O. O. Didur, V. R. Davydov, T. V. Sklyar, O. A. Drehval, M. R. Vergolyas, O. O. Verholias, O. M. Marenkov, M. M. Nazarenko, K. V. Lavrentieva, N. V. Kurahina, O. A. Lykholat, T. V. Legostaeva, I. O. Zaytseva, A. M. Kabar, T. Y. Lykholat

The high susceptibility of peach (Prunus persica L. Batsch) fruits to fungal diseases, which cause significant crop losses and a decrease in crop quality and the unsatisfactory effectiveness of chemical pathogen control agents, force us to look for unrealized reserves of plant resistance. In this regard, we hypothesized that the identification of differences in the hydrocarbon composition of fruit epicuticular waxes of peaches hybrids, which differ in resistance to pathogens, may contribute to a better understanding of the possible role of wax components in pathogenesis. The study was carried based on the Botanical Garden of Oles Honchar Dnipro National University (Dnipro city, Ukraine) using the ripening peach fruits of the "Red Heaven" cultivar and two hybrids with differences in the crossing schemes, fruit ripening rates, and fruit susceptibility to fungal diseases. The chloroform extracts of fruit epicuticular waxes were analyzed by gas chromatography connected to mass-spectrometry. GC/MS assay was performed using Shimadzu GCMS-QP 2020 El equipped with a capillary column (5% diphenyl/95% dimethyl polysiloxane) and helium carrier gas. Mass Spectrum Library 2014 for GCMS was used to identify the separated compounds of the wax extracts. The dominant components of all peach fruits' epicuticular waxes were n-alkanes with an even and odd carbons number from C27 to C60. Of these, some alkanes with an even number of carbons were represented by several isomers. The epicuticular wax of the most stable hybrid 1 contained a significant portion of odd alkanes, including hexacosane, which can be regarded as a factor contributing to cuticle integrity and, thus, counteracting the pathogenic infection development. The epicuticular fruit wax of the "Red Heaven" cultivar contains the highest total amount of alkanes, responsible for fruit sensitivity to pathogenic fungi attacks. In the epicuticular waxes of the most vulnerable hybrid 2, the highest amount of very-long-chain alkanes, the hexadecanoic fatty acid, and fatty aldehyde eicosanal were detected, which together could cause cuticle damage and high susceptibility of fruits to fungal diseases.

Keywords: peach; fungal diseases; resistance, epicuticular wax; n-alkane; aldehyde

 

References

 

Belge, B., Llovera, M., Comabella, E., Graell, J., & Lara, I. (2014). Fruit cuticle composition of a melting and a nonmelting peach cultivar. Journal of Agricultural and Food Chemistry, 62, 3488–3495. doi: 10.1021/jf5003528

Buschhaus, C., Herz, H., & Jetter, R. (2007). Chemical composition of the epicuticular and intracuticular wax layers on adaxial sides of Rosa canina leaves. Annals of Botany, 100(6), 1557–1564. doi: 10.1093/aob/mcm255

Dar, R.A., Rai, A.N., & Shiekh, I.A. (2017). Stigmina carpophila detected on Prunus armeniaca and Prunus persica in India. Australasian Plant Disease Notes, 12, 19. https://doi.org/10.1007/s13314-017-0245-6

Ding, S., Zhang, J., Yang, L., Wang, X., Fu, F., Wang, R., Zhang, Q., & Shan, Y. (2020). Changes in cuticle components and morphology of 'Satsuma' Mandarin (Citrus unshiu) during ambient storage and their potential role on Penicillium digitatum infection. Molecules, 25(2), 412. doi: 10.3390/molecules25020412

Fernández, V., Guzmán-Delgado, P., Graça, J., Santos, S., & Gil, L. (2016) Cuticle structure in relation to chemical composition: Re-assessing the prevailing model. Frontiers in Plant Science, 7, 427. doi: 10.3389/fpls.2016.00427

Hansjakob, A., Riederer, M., & Hildebrandt, U. (2011). Wax matters: absence of very-long-chain aldehydes from the leaf cuticular wax of the glossy11 mutant of maize compromises the prepenetration processes of Blumeria graminis. Plant Pathology, 60(6), 1151–1161. doi: 10.1111/j.1365-3059.2011.02467.x

Heredia, A. (2003). Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer. Biochimica et Biophysica Acta, 1620(1–3), 1–7. doi: 10.1016/S0304-4165(02)00510-X

Khromykh, N.O., Lykholat, Y.V., Kovalenko, I.M., Kabar, A.M., Didur, O.O., & Nedzvetska, M.I. (2018a). Variability of the antioxidant properties of Berberis fruits depending on the plant species and conditions of habitat. Regulatory Mechanisms in Biosystems, 9(1), 56–61. doi: 10.15421/021807

Khromykh, N., Lykholat, Y., Shupranova, L., Kabar, A., Didur, O., Lykholat, T., & Kulbachko, Y. (2018b). Interspecific differences of antioxidant ability of introduced Chaenomeles species with respect to adaptation to the steppe zone conditions. Biosystems Diversity, 26(2), 132–138. doi: https://doi.org/10.15421/011821

Khromykh, N.O., Lykholat, Y.V., Anishchenko, A.A., Didur, O.O., Gaponov, A.A., Kabar, A.M., & Lykholat, T.Y. (2020). Cuticular wax composition of mature leaves of species and hybrids of the genus Prunus differing in resistance to clasterosporium disease. Biosystems Diversity, 28(4), 370–375. doi: 10.15421/012047

Lara, I., & Heredia, A., Domínguez, E. (2019). Shelf life potential and the fruit cuticle: The unexpected player. Front Plant Science, 10, 770. doi: 10.3389/fpls.2019.00770

Lazniewska, J., Macioszek, V., & Kononowicz, A. (2012). Plant – fungus interface: The role of surface structures in plant resistance and susceptibility to pathogenic fungi. Physiological and Molecular Plant Pathology, 78, 24–30. doi: 10.1016/j.pmpp.2012.01.004

Lee, S.B., & Suh, M.C. (2015). Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species. Plant Cell Reports, 34(4), 557–572. doi: 10.1007/s00299-015-1772-2

L'Haridon, F., Besson-Bard, A., Binda, M., Serrano, M., Abou-Mansour, E., Balet, F., Schoonbeek, H.-J., Hess, S., Mir, R., Léon, J., Lamotte, O., & Métraux, J.-P. (2011). A permeable cuticle is associated with the release of reactive oxygen species and induction of innate immunity. PloS Pathogens, 7(7), e1002148. https://doi.org/10.1371/journal.ppat.1002148

Li, Y., Yin, Y., Chen, S., Bi, Y., & Ge, Y. (2014). Chemical composition of cuticular waxes during fruit development of Pingguoli pear and their potential role on early events of Alternaria alternate infection. Functional Plant Biology, 41(3), 313–320. https://doi.org/10.1071/FP13184

Lino, L.O. (2016). Study of the genetic variability of peach in susceptibility to brown rot during fruit development in relation with changes in physical and biochemical characteristics of the fruit. Agricultural sciences. Universitéd'Avignon. English. NNT: 2016AVIG0677. https://tel.archives-ouvertes.fr/tel-01635960

Lino, L.O., Quilot-Turion, B., Dufour, C., Corre, M.-N., Lessire, R., Génard, M., & Poëssel, J.-L. (2020). Cuticular waxes of nectarines during fruit development in relation to surface conductance and susceptibility to Monilinia laxa. Journal of Experimental Botany, 71(18), 5521–5537. https://doi.org/10.1093/jxb/eraa284

Lombardo, V.A., Osorio, S., Borsani, J., Lauxmann, M.A., Bustamante, C.A., Budde, C.O., Andreo, C.S., Lara, M.V., Fernie, A.R., Drincovich, M.F. (2011). Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage. Plant Physiology, 157, 1696–1710. doi: 10.1104/pp.111.186064

Lykholat, Y.V., Khromykh, N.O., Lykholat, T.Y., Didur, O.O., Lykholat, O.A., Legostaeva, T.V., Kabar, A.M., Sklyar, T.V., Savosko, V.M., Kovalenko, I.M., Davydov, V.R., Bielyk, Y.V., Volyanik, K.O., Onopa, A.V., Dudkina, K.A., & Grygoryuk, I.P. (2019). Industrial haracteristics and consumer properties of Chaenomeles Lindl. fruits. Ukrainian Journal of Ecology, 9(3), 132–137.

Marimon, N., Luque, J., Arus, P., & Eduardo, I. (2020). Fine mapping and identification of candidate genes for the peach powdery mildew resistance gene Vr3. Horticulture Research, 7, 175. https://doi.org/10.1038/s41438-020-00396-9

Martin, L.B., & Rose, J.K. (2014). There's more than one way to skin a fruit: formation and functions of fruit cuticles. Journal of Experimental Botany, 65(16), 4639–4651. doi: 10.1093/jxb/eru301

Quilot, B., Wu, B.H., Kervella, J., Génard, M., Foulongne, M., Moreau, K. (2004). QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theoretical and Applied Genetics, 109(4), 884–897.

Quilot, B., Génard ,M., Lescourret, F., & Kervella, J. (2005). Simulating genotypic variation of fruit quality in an advanced peach × Prunus davidiana cross. Journal of Experimental Botany, 56(422), 3071–3081. doi: 10.1093/jxb/eri304

Rebora, M., Salerno, G., Piersanti, S., Gorb, E. & Gorb, S. (2020). Role of fruit epicuticular waxes in preventing Bactrocera oleae (Diptera: Tephritidae) attachment in different cultivars of Olea europaea. Insects, 11(3), 189. doi: 10.3390/insects11030189

Rios, J. C., Robledo, F., Schreiber, L., Zeisler, V., Lang, E., Carrasco, B., & Silva H. (2015). Association between the concentration of n-alkanes and tolerance to cracking in commercial varieties of sweet cherry fruits. Scientia Horticulturae, 197, 57–65. doi: 10.1016/j.scienta.2015.10.037

Serrano, M., Coluccia F., Torres M., L’Haridon F., & Jean-Pierre Métraux J-P. (2014). The cuticle and plant defense to pathogens. Frontiers in Plant Science, 5, 274. https://doi.org/10.3389/fpls.2014.00274

Silva-Moreno, E., Brito-Echeverría, J., López, M., Ríos, J., Balic, I., Campos-Vargas, R., & Polanco, R. (2016). Effect of cuticular waxes compounds from table grapes on growth, germination and gene expression in Botrytis cinerea. World Journal of Microbiology and Biotechnology, 32, 74. https://doi.org/10.1007/s11274-016-2041-4

Shen,Y., Liu, N., Li, C., Wang, X., Xu, X., Chen, W., Xing, G., & Zheng, W. (2017). The early response during the interaction of fungal phytopathogen and host plant. Open Biology, 7(5), 170057. doi: 10.1098/rsob.170057

Trivedi, P., Nguyen, N., Hykkerud, A.L., Häggman, H., Martinussen, I., Jaakola, L., & Karppinen, K. (2019). Developmental and environmental regulation of cuticular wax biosynthesis in fleshy fruits. Frontiers in Plant Science, 10, 431. doi: 10.3389/fpls.2019.00431

Yeats, T.H., & Rose, J.K.C. (2013). The formation and function of plant cuticles. Plant Physiology, 163, 5–20. doi: 10.1104/pp.113.222737

Wu, X., Yin, H., Shi, Z., Chen, Y., Qi, K., Qiao, X., Wang, G., Cao, P., & Zhang, S. (2018). Chemical composition and crystal morphology of epicuticular wax in mature fruits of 35 Pear (Pyrus spp.) cultivars. Frontiers in Plant Science, 9, 679. doi:  https://doi.org/10.3389/fpls.2018.00679

Zabka, V., Stangl, M., Bringmann, G., Vogg, G., Riederer, M., & Hildebrandt, U. (2008). Host surface properties affect prepenetration processes in the barley powdery mildew fungus. New Phytologist, 177 (1), 251–263.  https://doi.org/10.1111/j.1469-8137.2007.02233.x

Ziv, C., Zhao, Z., Gao, Y.G., & Xia, Y. (2018). Multifunctional roles of plant cuticle during plant-pathogen interactions. Frontiers in Plant Science, 9, 1088. doi: 10.3389/fpls.2018.01088

Share this article