Functional state of the liver in cows with fatty liver disease

Abstract

V. V. Vlizlo, O. I. Prystupa, L. G. Slivinska, B. O. Lukashchuk, Shan Hu, B. V. Gutyj, I. A. Maksymovych, A. R. Shcherbatyy, M. G. Lychuk, B. O. Chernushkin, M. I. Leno, V. I. Rusyn, M. P. Drach, V. L. Fedorovych, H. O. Zinko, V. Y. Yaremchuk

Studies in dairy farms have shown that the leading causes of fatty liver disease were violations of the structure of rations, imbalance of feeding on the primary nutrients, and biologically active substances. The study was performed on cows aged 4–5 years with productivity for the previous lactation of 5,600–7,500 L of milk, in a winter-stall period of keeping, 2–3 weeks after calving. According to clinical and biochemical blood tests, two groups of cows were formed – 50 clinically healthy and 50 cows with fatty liver disease. Clinically, the disease was manifested in general and in some cows by typical symptoms. The blood serum of all cows with fatty liver disease established a decrease in albumin content, indicating impaired protein synthesis function of the liver. Dystrophic changes in hepatocytes, irritation of reticuloendothelial system cells by exotoxins and endotoxins, which accumulate during liver damage, cause the excessive formation of globulins, increased content of total serum protein, and the development of dysproteinemia. In the blood of all cows with the fatty liver disease increases the concentration of bile acids. The formation, absorption, conjugation, and excretion of bilirubin in the bile is disturbed, which causes the accumulation of total and conjugated bilirubin in the serum of cows. The cholesterol content in the blood of cows decreased, caused a violation of the esterification of its esters by hepatocytes. The established changes in the content of bile acids, total and conjugated bilirubin, and cholesterol in the blood of sick cows indicate a violation of bile secretion, bile production, and cholestasis development. In some cows with fatty liver disease, urea formation function and carbohydrate function are impaired, leading to a decrease in blood urea content and glucose.

Keywords: cows; fatty liver disease; symptoms; biochemical blood parameters; liver functions.
 

References

 

Bobe, G., Young, J. W., & Beitz, D. C. (2004). Invited review: Pathology, etiology, prevention, and treatment of fatty liver in dairy cows. J. Dairy Sci., 87, 3105–3124.

Boyer, J. L. (2013). Bile formation and secretion. Compr Physiol., 3(3), 1035−1078.

Caixeta, L. S., & Omontese, B. O. (2021). Monitoring and Improving the Metabolic Health of Dairy Cows during the Transition Period. Animals, 11(2), 352. doi: 10.3390/ani11020352.

Chernushkin, B. O., Vlizlo, V. V., Slivinska, L. G., Gutyj, B. V., Shcherbatyy, A. R., Maksymovych, I. A., Leno, M. I., Rusyn, V. I., Lychuk, M. H., Fedorovych, V. L., Lukashchuk, B. O., Zinko, H. O., & Prystupa, O. I. (2020). Treatment strategies for sheep with acute yellow athrophy of the liver caused by the fasciolosis. Ukrainian Journal of Ecology, 10(2), 294–301. doi: 10.15421/2020_100.

De Vries, A., & Marcondes, M. I. (2020). Review: Overview of factors affecting productive lifespan of dairy cows. Animal, 14(1), 155–164. doi:10.1017/S1751731119003264.

Dirksen, G., Gr?nder, H. D., & Stöber, M. (2002). Innere Medizin und Chirurgie des Rindes. Berlin: Parey, 1325.

González, F. D., Muiño, R., Pereira, V., Campos, R., & Benedito, J. L. (2011). Relationship among blood indicators of lipomobilization and hepatic function during early lactation in high-yielding dairy cows. J. Vet Sci., 12(3), 251–255.

Gross, J. J., Schwinn, A.-C., Müller, E., Münger, A., Dohme-Meier, F., & Bruckmaier, R. M. (2021). Plasma cholesterol levels and short-term adaptations of metabolism and milk production during feed restriction in early lactating dairy cows on pasture. J. Anim. Physiol. Anim. Nutr. PMID: 33724571 DOI: 10.1111/jpn.13531.

Gruber, S., & Mansfeld, R. (2019). Herd health monitoring in dairy farms - discover metabolic diseases. An overview. Tierarztl. Prax. Ausg. G. Grosstiere Nutztiere,47(4), 246-255. doi: 10.1055/a-0949-1637.

Grummer, R. R. (2007). Nutritional and management strategies for the prevention of fatty liver in dairy cattle. Vet. J., 176, 10–20. doi: 10.1016 /j.tvjl.2007.12.033.

Grymak, Y., Skoromna, O., Stadnytska, O., Sobolev, O., Gutyj, B., Shalovylo, S., Hachak, Y., Grabovska, O., Bushueva, I., Denys, G., Hudyma, V., Pakholkiv, N., Jarochovich, I., Nahirniak, T., Pavliv, O., Farionik, ?., & Bratyuk, V. (2020). Influence of "Thireomagnile" and "Thyrioton" preparations on the antioxidant status of pregnant cows. Ukrainian Journal of Ecology, 10(1), 122-126.  doi: 10.15421/2020_19

Gutyj, B., Nazaruk, N., Levkivska, N., Shcherbatyj, A., Sobolev, A., Vavrysevych, J., Hachak, Y., Bilyk, O., Vishchur, V., & Guta, Z. (2017). The influence of nitrate and cadmium load on protein and nitric metabolism in young cattle. Ukrainian Journal of Ecology, 7(2), 9–13. doi: 10.15421/201714.

Ingvartsen, K. L. (2006). Feeding- and management-related diseases in the transition cow – Physiological adaptations around calving and strategies to reduce feeding-related diseases. Animal Feed Science and Technology, 126, 175−213.

Kalaitzakis, E., Panousis, N., & Roubies, N. (2010). Clinicopathological evaluation of downer dairy cows with fatty liver. Can. Vet. J., 51(6), 615–622.

Klug, F., Wangler, A., & Rehbock, F. (2004). Aktuelle Probleme bei ?ter Milchkuh. LehmannsMedia. Berlin, 300.

Kraft, W., & Dürr, U. (2005). Klinische Labordiagnostik in der Tiermedizin. 6. Aufl. Stuttgart; New York: Schattauer, 157–161.

Levchenko, V. I., Kondrakhin, I. P., & Vlizlo, V. V. (2012). Vnutrishni khvoroby tvaryn. Bila Tserkva, 1, 528 (in Ukrainian).

Lukashchuk, B. O., Slivinska, L. G., Shcherbatyy, A. R., Zinko, H. O., & Gutyj, B. V. (2020). Influence of modern treatment regimens on serum biochemical parameters in piglets with gastroenteritis. Regulatory Mechanisms in Biosystems, 11(1), 67–73. doi: 10.15421/022009.

Lychuk, M. G., Slivinska, L. G., Berezovskyi, A. V., & Paska, M. Z. (2016). Vplyv kormovoi dobavky «Normoteltm» na stan zhovchoutvorennia ta zhovchovydilennia za ketozu molochnykh koriv. Visnyk Zhytomyrskoho natsionalnoho ahroekolohichnoho universytetu, 2(56), 215–225 (in Ukrainian).

Morris, D. G., Waters, S. M., McCarthy, S. D., & Patton, J. (2009). Pleiotropic effects of negative energy balance in the postpartum dairy cow on splenic gene expression: repercussions for innate and adaptive immunity. Physiol. Genomics, 39(1), 28–37.

Rehage, J., Qualmann, K., & Meier, C. (1999). Total serum bile acid concentrations in dairy cows with fatty liver and liver failure. Deut. Tierärztl Woch, 106, 26–29.

Roman, L., Broshkov, M., Popova, I., Hierdieva, A., Sidashova, S., Bogach, N., Ulizko, S., Gutyj, B. (2020). Influence of ovarian follicular cysts on reproductive performance in the cattle of new Ukrainian red dairy breed. Ukrainian Journal of Ecology, 10(2), 426-434

Shcherbatyy, A. R., Slivinska, L. G., Gutyj, B. V., Golovakha, V. I., Piddubnyak, O. V., Fedorovuch, V. L. (2017). The influence of a mineral-vitamin premix on the metabolism of pregnant horses with microelemetosis. Regulatory Mechanisms in Biosystems, 8(2), 293–298. doi: 10.15421/021746.

Simonov, M. R., & Vlizlo, V. V. (2016). The effect of "Remivital" on plasma aminoacid composition in dairy cows with ketosis. Agricultural Science and Practice, 3(1),73–79.

Simonov, M., & Vlizlo, V. (2015). Some blood markers of the functional state of liver in dairy cows with clinical ketosis. Bulg. J. Vet. Med., 18(1), 74–82.

Simonov, M., Vlizlo, V., & Petruh, I. (2016). Plasma concentrations of insulin-like growth factor, triiodothyronine, thyroxine, and insulin in cows during different physiological states. Agricultural Science and Practice, 3(3), 17–21. doi: 10.15407/agrisp3.03.017.

Slivinska, L. G., Shcherbatyy, A. R., Lukashchuk, B. O., & Gutyj, B. V. (2020). The state of antioxidant protection system in cows under the influence of heavy metals. Regulatory Mechanisms in Biosystems, 11(2), 237–242. doi:10.15421/022035

Slivinska, L.G., Vlizlo, V.V., Shcherbatyy, A.R., Lukashchuk, B.O., Gutyj*, B.V., Drach, M.P., Lychuk, M.G., Maksymovych, I.A., Leno, M.I., Rusyn, V.I., Chernushkin, B.O., Fedorovych, V.L., Zinko, H.O., Prystupa, O.I., Yaremchuk, V.Y. (2021). Influence of heavy metals on metabolic processes in cows. Ukrainian Journal of Ecology, 11 (2), 284-291.  doi: 10.15421/2021_112

Smith, G. L., Friggens, N. C., Ashworth, C. J., & Chagunda, M. G. G. (2017). Association between body energy content in the dry period and post-calving production disease status in dairy cattle. Animal, 11(9), 1590–1598. doi: 10.1017/S1751731117000040.

Van Knegsel, A. T. M., Van den Brand, H., & Graat, E. A. M. (2007). Dietary energy source in dairy cows in early lactation: metabolites and metabolic hormones. J. Dairy Sci., 90(3), 1477–1485.

Vlizlo, V. V. & Prystupa, O. I. (2011). Stan zhovchoutvoriuvalnoi ta zhovchovydilnoi funktsii pechinky u koriv, khvorykh na zhyrovu hepatodystrofiiu. Naukovyi visnyk veterynarnoi medytsyny: zb. nauk. prats, 8 (87), 30–33 (in Ukrainian).

Vlizlo, V. V. (1998). Urazhennia nervovoi systemy pry patolohii pechinky u koriv (pechinkova entsefalopatiia, pechinkova koma). Veterynarna medytsyna: Mizhvid. temat. naukovyi zbirnyk, 74, 167–175 (in Ukrainian).

Vlizlo, V. V., Simonov, M. P., Petruch, I. M. et al. (2020). Metabolichni protsesy v orhanizmi koriv u tranzytnyi period i za rozvytku ketozu. Metodychni rekomendatsii. Lviv (in Ukrainian).

Vlizo, V., & Lewtschenko, W. (1992). Liver diseases of fattening bulls. DTW. Deutsche tierärztliche Wochenschrift, 96(6), 254–257.

West, H. J. (1989). Liver function of dairy cows in late pregnancy and early lactation. Res. Vet. Sci., 46(2), 223231.

Yuskiv, L. L., & Vlizlo, V. V. (2014). Vitamin D Provision in High-Yield Dairy Cows during Winter Housing Period. Agricultural Science and Practice, 1(1), 42–46.

Share this article