Impact of SiO2, Al2O3, and ZnO nanomaterials on the physiological parameters of winter rape

Abstract

M.V. Savchuk, M.M. Lisovyy, O.P. Taran, O.V. Voitsekhivska, V.N. Belava, O.O. Panyuta, S.O. Tkachyk, O.S. Demyanyuk, I.M. Klymchuk

Objectives. Assessing the impact of nanosize materials of diverse concentrations upon the physiological indices of winter rape's Demerka variety. Methods: laboratory (method of induction of chlorophyll fluorescence, methods of identifying the seeds' sowing properties, and biometric indices of winter rape's plants), statistics. Results. This article discusses the analysis results targeting the impact of nanosize materials upon the physiological indices of winter rape's Demerka variety. The research proves that preliminary soaking the seeds in nanomaterials' solutions increases the energy germination and seed germination of winter rape's Demerka variety. The highest indices of the said variety's energy of germination and seed germination were provided by the influence of the SiO2 (95,3 and 98,3%) and ZnO (91,8 and 97,3%) nano-materials 300 mg/l concentration. The length of the winter rape's seedlings increased due to the prior processing of the seeds with the SiO2 and ZnO nanomaterials. The highest indices of the seedlings' stem' growth were provided by using the SiO2 nanomaterial in 300 mg/l concentration, as the stem parts of the said seedlings appeared to be 81% longer than those in the control group. The highest index of the seedlings' root segment (30,5 % extra growth compared to the control group) was provided by the impact of the ZnO nanomaterial in 150 mg/l concentration. Sowing and biometric indices of winter rape plants were virtually unaffected by the Al2O3 nanomaterial. The nanomaterials under analysis do not impede chlorophyll fluorescence induction in the plants of winter rape of the Demerka variety. Conclusions. The use of the SiO2 and ZnO nanomaterials in 300 mg/l concentration for the pre-sowing processing of the seeds of winter rape's Demerka variety causes the activation of growth parameters and improves induction of chlorophyll fluorescence.

Keywords: nanomaterials, winter rape, seeds, growth processes, physiological parameters, germination energy, and seed germination.
 

References

 

Brayon, A., Korneev, D., Snegur, A., & Kitaev, O. (2000). Instrumental study photosynthetic apparatus usingfor chlorophyll fluorescence induction [method. Instructions for students. Biol. Ft.]. Kyiv. Kyivskyi universytet.

Costenaro, D., Bisio, C., Carniato, F., Taran, M.,… & Guidotti, M. (2017). Physico–chemical properties, biological and environmental impact of Nb–saponites catalysts for the oxidative degradation of chemical warfare agents. ChemistrySelect, 2(5),1812-1819. Doi: https://doi.org/10.1002/slct.201700042

Das, S., Mukherjee, A., Sengupta, G., & Singh, V. K. (2020). Overview of nanomaterials synthesis methods, characterization techniques and effect on seed germination. In Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants (pp.371-401). Elsevier. Doi: https://doi.org/10.1016/B978-0-12-818598-8.00018-3

Do?ru, A., & Çakirlar, H. (2020). Effects of leaf age on chlorophyll fluorescence and antioxidant enzymes activity in winter rapeseed leaves under cold acclimation conditions. Brazilian Journal of Botany, 43(1), 11-20. Doi: https://doi.org/10.1007/s40415-020-00577-9

DSTU 2240-93. (1994). Seeds of agricultural cultures. Varietal and sowing qualities. Specifications. Kyiv: State Standard of Ukraine.

Gonchar, L. M. (2016). Action of colloidal solution of copper and zinc on seed germination of oats. Visnyk Poltavskoyi Derzhavnoyi agrarnoyi akademiyi, 4, 45–48. Doi: https://doi.org/10.31210/visnyk2016.04.08 (in Ukrainian)

Gritsaenko, Z., Grytsaenko, A., & Karpenko, V. (2003). Methods of biological and agrochemical researches of plants and soils. K.: JSC "Nichlava".

Kalenska, S, Lopatko, K, & Novictska, N. (2011). Efficiency of biogenic metals and bio-activebioactive drugs in soybean. Naukovi dopovidi NUBiP, 5(27). http://nd.nubip.edu.ua/2011_5/11ksm.pdf (in Ukrainian)

Klymenko, ?., Fedorchuk, S., Trembitska, O., Lisovyy, M., Didur, O., & Lykholat, Yu. (2020). Effect of fertilization on Solanum tuberosum L. Productivity in Ukrainian polissya. Ukrainian Journal of Ecology, 10(3), 124–130. DOI: https://doi.org/10.15421/2020_145      

Korneev, D. Yu., & Kochubei, S. M. (2000). Investigation of QV - reducing complexes of photosystem 2 by induction of fluorescence of chlorophyll. Physiology and biochemistry of cultivated plants, 32(1). 20–24.

Korsunsky, V., & Snegur, A. (1997). Instruction toon the device "Floratete FT-1". Rost.

Kovalyshyn, I., Pinchuk, A., Taran, M., & Shvets, R. (2016). Chlorophyll fluorescence induction of the genus Clematis L. representatives leaves in kiev conditions. Naukovyi visnyk NUBiP Ukrainy. Seriia: Lisivnytstvo ta dekoratyvne sadivnytstvo, 238, 176–84.

Kyrpa, M. Ya., & Paschenko, N. O. (2003). Methods of determining the similarity of high qualityhigh-quality corn seeds. Biuleten Instytutu zernovoho hospodarstva UAAN, 20, 60–62.

Kyrpa, M.Ya., Scotar, S.O., Bazileva, Yu.S., & Lupitko O.I. (2016). Sowing characteristics of cereal seeds and methodology of their determination. Plant breeding and seed production, (110):171-79. Doi: https://doi.org/10.30835/2413-7510.2016.87625 (in Ukrainian)

Leshchenko, O., Kolesnichenko, O., Kytayev, O., Leshchenko, Yu., & Dradrach, A. (2015). Induction of chlorophyll fluorescence in plants leaf Lolium perenne. Biological Resources and Nature management, 7, 3/4. 11–15.

Makrushin M.M. (2011). Seed production: textbook. Simferopol. Arial. P.440–443.

Moiseychenko, F., Trifonova, M., Zaveryukha, A., & Eshchenko, V. (1996). Fundamentals of scientific research in agronomy. Moscow. Kolos.

Narimani, H., & Sharifi, R. (2020). Effect of foliar and soil application of zinc on photosynthetic pigments, chlorophyll fluorescence and grain yield of wheat under soil salinity. Journal of Soil Management and Sustainable Production,10(2), 89-105. Doi: https://doi.org/10.22069/EJSMS.2020.16140.1861  

Nizova, G.K., & Dubovskaya, A.G. (2006). Biochemical study of spring and winter oilseed rape from the collection of VIR. N.I. Vavilova. Agrarian Russia, 6, 37-40. (in Russian)

Patel, D. K., Kim, H. B., Dutta, S. D., Ganguly, K., & Lim, K. T. (2020). Carbon nanotubes-based nanomaterials and their agricultural and biotechnological applications. Materials, 13(7), 1679.Doi: https://doi.org/10.3390/ma13071679

Rudnyk-Ivashchenko, O.I., Shovgun, ?.O., Ivanytska, A.P., Shcherbynina, N.P., Lyashenko, S.O., Chukhleb, S.L., & Badyaka, O.O. (2014). Biochemical properties of new varieties of rape. Variety research and protection of plant variety rights, 4, 29-33. Doi:10.21498/2518-1017.4(25).2014.55605 (in Ukrainian)

Savchuk, M., Starodub, M., Bisio C., Guidotti M., & Lisovyy M. (2018). Estimation of the efficiency of applying nanocomposites as environmentally safe nanofertilizers to stimulate biometric indices of agricultural crops. Agric. sci. pract, 5 (2), 64–76. Doi: https://doi.org/10.15407/agrisp5.02.064

Savchuk, M.V., & Starodub, M.F. (2017). Influence of Nb-containing nanocomposites based on saponite on the induction of chlorophyll fluorescence in corn leaves. Scientific reports of the National University of Life and Environmental Sciences of Ukraine, 3 (67). Doi: http://journals.nubip.edu.ua/index.php/Dopovidi/article/viewFile/ 8724/8062

Shavanova, K. E., Taran, M. V., Marchenko, O. A., & Starodub, N. F. (2013). Express control of plants general state by using the new generation of the instrumental tools. In Biophotonics-Riga, 9032. 90320. Doi:10.1117/12.2044686

Taran, N.Yu., Batsmanova, L.M., Lopatko, K.G., & Kalenska, S.?. (2011). The technology of environmentally safe use of nanoparticles in adaptive crop production. Fizyka zhyvoho, 19(2), 54–58.

Vinogradov, D. (2014). Herbicides and their mixtures on crops of spring rape. Chief agronomist, 10, 21–23.

Share this article