Improved techniques for the reduction of microbial contamination toxic gas content in the air of the poultry houses


A.P. Palii, I.M. Lukyanov, P.V. Gurskyi, O.A. Svirgun, I.V. Chaly, A.M. Milenin, Yu.I. Tokolov, I.V. Grebnova, A.O. Kovalchuk, Y.A. Boyko, A.P. Paliy

The issue of protecting the environment from harmful emissions is currently urgent for virtually all poultry farms. At the same time, the increased concentrations of ammonia, carbon dioxide and hydrogen sulfide in the air of the poultry houses have a negative impact on the physiological state of the bird’s organism and farm personnel. The purpose of the research was to determine the effectiveness of the use of advanced techniques to reduce the microbial contamination of the air in the poultry houses and the content of toxic gases in the real production conditions and the economic effect of their use. We registered that ammonia content in the air of poultry houses of the new variant decreased by 2.6 times on the first day and by 1.9 times on the fifth day compared to the basic variant during the cold season; during the transition season it decreased by 2.3 times and 1.7 times, respectively. The total weight of the litter after removal from the premises in the experimental poultry house was by 95 t less than in the basic version, which allowed reducing transport costs. In the new version, 104,050 eggs or 18.834 t of egg mass more were received. The use of the proposed technological solutions contributed to some reduction in the specific feed cost: by 329 g - per 1 average laying hen, 11 g per 10 eggs, 51 g or 2.3% - per 1 kg of egg mass. The application of the proposed technological solutions provides an annual economic effect of 769.2 UAH per 1,000 heads and a payback period of additional costs is 0.7 years.

Keywords: Poultry house; Toxic gases; Air; Bacterial contamination; Microclimate


Al-Homidan, A., Robertson, J. F., & Petchey, A. M. (2003). Revier of the effect of ammonia and dust concentration on broiler performance. World’s Poultry Science Journal, 59(3), 607-610.

Almuhanna, E. A., Amer Eissa, A. H., Alghannam, A. O., & Al-Amri, A. M. (2012). Optimization of Dust Removal in Poultry Houses Using Electrostatic Wet Scrubber. Journal of Applied Sciences Research, 8(12), 5651-5660. ISSN 1819-544X

Broucek, J., & Cermak, В. (2015). Emission of harmful gases from poultry farms and possibilities of their reduction. Ekológia (Bratislava), 34(1), 89-100. doi:10.1515/eko-2015-0010

Burns, R. T., Xin, H., Gates, R. S., Li, H., Overhults, D., Moody, L., & Earnest, J. W. (2007). Ammonia emission from poultry broiler systems in the southeastern United States. Proceedings of the International Symposium on Air Quality and Waste Management for Agriculture: ASABE.

Calvet, S., Cambra-López, M., Blanes-Vidal, V., Estellés, F., & Torres, A. G. (2010). Ventilation rates in mechanically-ventilated commercial poultry buildings in Southern Europe: Measurement system development and uncertainty analysis. Biosystems Engineering, 1(06), 423-432.

Calvet, S., Cambra-Lopez, M., Estelles, F., & Torres, A. G. (2011). Characterization of gas emissions from a mediterranean broiler farm. Poultry Science, 90, 534-542. doi:10.3382/ps.2010-01037

Casey, K. D., Gates, R. S., Wheeler, E., Xin, H., Liang, Y., Pescatore, A. J., & Ford, M. J. (2008). On-Farm Ventilation fan performance evaluations and implications. Journal of Applied Poultry Research, 17, 283-295.

Chidambaranathan, A. S., & Balasubramanium, M. (2017). Comprehensive review and comparison of the disinfection techniques currently available in the literature. Journal Prosthodont, 28(2), 849-856. doi:10.1111/jopr.12597

Costa, A., Ferrari, S., & Guarino, M. (2012). Yearly emission factors of ammonia and particulate matter from three laying-hen housing systems. Anim. Prod. Sci., 52, 1089-1098. doi:10.1071/AN11352

Donham, K. J., Cumro, D., & Reynolds, S. (2002). Synergistic effects of dust and ammonia on the occupational health effects of poultry production workers. Journal Agromed, 8, 57-76. doi:10.1300/J096v08n02_09

Dumas, M. D., Polson, S. W., Ritter, D., Ravel, J., Jr, J. G., Morgan, R., & Wommack, K. E. (2011). Impacts of Poultry House Environment on Poultry Litter Bacterial Community Composition. PLoS ONE 6(9), e24785.

Dunlop, M. W., Blackall, P. J., & Stuetz, R. M. (2016). Odour emissions from poultry litter - A review litter properties, odour formation and odorant emissions from porous materials. Journal Environ Manage., 177, 306-319. doi:10.1016/j.jenvman.2016.04.009

Fernanda, C. S., Iida, F. F. T., Jagir, N. S., & Baptista, F. J. F. (2017). Gas emission in the poultry production. Journal of Animal Behaviour and Biometeorology, 5(2), 49-55. doi:10.14269/2318-1265/jabb.v5n2p49-55

Ishchenko, K. V., Palii, A. P., Kis, V. M., Petrov, R. V., Nagorna, L. V., Dolbanosova, R. V., & Paliy, A. P. (2019). Investigation of microclimate parameters for the content of toxic gases in poultry houses during air treatment in the scrubber with the use of various fillers. Ukrainian Journal of Ecology, 9(2), 74-80.

Kic, P. (2016). Microclimatic conditions in the poultry houses. Agronomy Research, 14(1), 82-90.

Linlin Jiang, Meng Li, Jinxiu Tang, Xiaoyu Zhao, Jianlong Zhang, Hongwei Zhu, Xin Yu, Youzhi Li, Tao Feng, & Xingxiao Zhang. (2018). Effect of Different Disinfectants on Bacterial Aerosol Diversity in Poultry Houses. Front Microbiol., 9, 2113. doi:10.3389/fmicb.2018.02113

Marchenko, O. A. (2010). Poultry farming is a progressive air pollutant. Agroecological journal, 3, 34-38. (In Ukrainian)

McKeegan, D. E. F., Sparks, N. H. C., Sandilands, V., Demmers, T. G. M., Boulcott, P., & Wathes, C. M. (2011). Physiological responses of laying hens during whole-house killing with carbon dioxide. British Poultry Science, 52(6), 645-57. doi:10.1080/00071668.2011.640307

Mendes, L. B., Tinoco, I. F. F., Ogink, N., Osorio, R. H., & Osorio, S. J. (2014). A refined protocol for calculating air flow rate of naturally-ventilated broiler barns based on CO2 mass balance. Revista DYNA, 81(1), 197-203. doi:10.1590/1807-1929/agriambi.v

Milanov, D., Ljubojević, D., Čabarkapa, I., Karabasil, N., & Velhner, M. (2017). Biofilm as risk factor for Salmonellacontamination in various stages of poultry production. Europ. Poultry Science, 81. doi:10.1399/eps.2017.190

Naseem, S., & King, A. J. (2018). Ammonia production in poultry houses can affect health of humans, birds, and the environment-techniques for its reduction during poultry production. Environ Science Poultry Res. Int., 25(16), 15269-15293. doi:10.1007/s11356-018-2018-y

Oakley, B. B., Morales, C. A., Line, J., Berrang, M. E., Meinersmann, R. J., Tillman, G. E., Wise, M. G., Siragusa, G. R., Hiett, K. L., & Seal, B. S. (2013). The Poultry-Associated Microbiome: Network Analysis and Farm-to-Fork Characterizations. PLoS ONE, 8(2), e57190.

Palii, A., & Ishchenko, K. (2019). Ways to solve the disposal of poultry manure in poultry farms. Journal of Poultry. ua. 5(17), 46-48. (in Ukrainian)

Palii, A. P., Lukyanov, I. M., Kovalchuk, A. O., Denicenko, S. A., Kalabska, V. S., Ivashchenko, S. G., Boyko, Y. A., Sychova, T. O., Diachuk, P. V., Mitiashkina, T. Y., & Paliy, A. P. (2019a). Efficiency of various reagents on ammonia reduction in litter removal from belt conveyors for battery cages. Ukrainian Journal of Ecology, 9(4), 571-577. doi:10.15421/2019_792

Palii, A. P., Nanka, O. V., Kovalchuk, Y. O., Kovalchuk, A. O., Kalabska, V. S., Kholod, I. V., Pobirchenko, O. M., Umrihina, O. S., Poliakov, A. M., Ishchenko, K. V., & Paliy, A.P. (2020). Effect on the bactericidal device for decontamination the air microorganisms in poultry house on the content of toxic gases. Ukrainian Journal of Ecology, 10(1), 24-29. doi:10.15421/2020_4

Palii, A. P., Naumenko, O. A., Shkromada, O. I., Tarasenko, L. A., Rodionova, K. A., Nechyporenko, O. L., Nechyporenko, V. V., Ulko, L. Y., Ishchenko, K. V., Prudnikov, V. G., Paliy, A. P., & Berezovskiy, A. V. (2019b). Investigation of the Microclimate of Poultry Houses and Chemical Composition of Poultry Litter, Depending on the time of Its Accumulation in the Cage Batteries. Ukrainian Journal of Ecology, 9(3), 272-279. doi:10.15421/2019_741

Palii, A. P., Pylypenko, S. H., Lukyanov, I. M., Zub, O. V., Dombrovska, A. V., Zagumenna, K. V., Kovalchuk, Y. O., Ihnatieva, T. M., Ishchenko, K. V., Paliy, A. P., & Orobchenko, O. L. (2019c). Research of techniques of microclimate improvement in poultry houses. Ukrainian Journal of Ecology, 9(3), 41-51. doi:10.15421/2019_707

Paliy, A. P., Mashkey, A. M., Sumakova, N. V., & Paliy, A. P. (2018a). Distribution of poultry ectoparasites in industrial farms, farms, and private plots with different rearing technologies. Biosystems Diversity, 26(2), 153-159.

Paliy, A. P., Rodionova, K. O., Braginec, M. V., Paliy, A. P., & Nalivayko, L. I. (2018b). Sanitary-hygienic evaluation of meat processing enterprises productions and their sanation. Ukrainian Journal of Ecology, 8(2), 81-88. doi:10.15421/2018_313

Paliy, A. P., Sumakova, N. V., Paliy, A. P., & Ishchenko, K. V. (2018c). Biological control of house fly. Ukrainian Journal of Ecology, 8(2), 230-234. doi:10.15421/2018_332

Saeed, M., Arain, M. A., Naveed, M., Alagawany, M., Abd El-Hack, M. E., Bhutto, Z. A., Bednarczyk, M., Kakar, M. U., Abdel-Latif, M., & Chao, S. (2018). Yucca schidigera can mitigate ammonia emissions from manure and promote poultry health and production. Environ. Sci. Pollut. Res. Int., 25(35), 35027-35033. doi:10.1007/s11356-018-3546-1

Saksrithai, K. (2018). Controlling Hydrogen Sulfide Emissions during Poultry Productions. Journal of Animal Research and Nutrition, 3, 1,  2. doi:10.21767/2572-5459.100040

Schmidt, D. R., Jacobson, L. D., & Janni, K. A. (2002). Continuous monitoring of ammonia, hydrogen sulfide and dust emissions from swine, dairy and poultry barns. American Society of Agricultural and Biological Engineers, 024060. doi:10.13031/2013.10575

Tan, H. Q., Li, M., Jie, D. F., Zhou, Y. F., & Li, X. A. (2019). Effects of different litters on ammonia emissions from chicken manure. International Journal of Agricultural and Biological Engineering, 12(4), 27-33. doi:10.25165/j.ijabe.20191204.5011

Tertichnaya, O., Brigas, O., Svalyavchuk, L., & Melnik, N. (2017). Environmental assessment of the state of atmospheric air in various poultry production technologies. ScienceRise: Biological Science, 3(6), 18-21. doi:10.15587/2519-8025.2017.105062

Tihonchuk, D. (2015). Comfort at the poultry farm. Contemporary Poultry Farming, 9(154), 27-28. (In Ukrainian)

Zhao, Y., Shepherd, T. A., Li, H., & Xin, H. (2015). Environmental assessment of three egg production systems: Monitoring system and indoor air quality. Poultry Science, 94, 518-533. doi:10.3382/ps/peu076.

Share this article