Improving the sanitary condition of fish pond bed by forage grass cultivation

Abstract

S.M. Nazarenko, A.P. Paliy, A.V. Berezovskiy, A.I. Fotin, O.V. Fotin, R.V. Petrov, O.I. Kasianenko, L.N. Lazorenko, J.V. Negreba, A.P. Palii, H.I. Rebenko

The main purpose of the complex of reclamation works for the preparation of ponds for further exploitation is to create conditions for accelerating the processes of mineralization of organic substances that have accumulated during the growing season, to increase the intensity of development of the natural forage base in the next season, to reduce the risk of fish diseases. The purpose of the work was to develop an environmentally friendly method of improving the sanitary condition of the soil of the pond bed during its casting by sowing agricultural plants having bactericidal properties. The studies were performed using conventional techniques. Bacteria of the group of E. coli, Salmonella, and Enterococci were isolated from the soil of the pond bed. The sanitary and bacteriological conditions of the soil of the bed of the pond during the cultivation of different crops after 140-150 days after the water was lowered showed that by the end of the growing season (after 150 days after the casting) there is a gradual decrease in microbial contamination of the soil, reduced the amount of coli-titer and titer of Enterococci. The intensity of microbial decontamination is directly dependent on the type of fodder grown. The results of cultivation of crops 90 days after the descent of water showed that the processes of self-purification of the soil of the botanical ground are influenced by their rhizosphere - a plot of soil directly adjacent to the roots of plants and to which the root secretions and soil microorganisms act. 90 days after the descent of water, the canary grass and white turmeric were the most active in the process of remediation of contaminated soil. Compared to baseline, microbial soil contamination during this period decreased by 79.6% (p≤0.001) and 78.3% (p≤0.001, respectively). The coli-titer and Enterococci titer was 0.01. The annual activity of amaranth and rapeseed was the least active in self-purification processes. After 90 days of soil experiment, number of mesophilic aerobic and facultative-anaerobic microorganisms decreased by 61.3% (p≤0.001) and 55.7% (p≤0.001), respectively, and the coli-titer and Enterococci titer decreased to 0.01. At the end of the growing season, from the beginning of the season, a further decrease in soil microbial contamination was observed, and the intensity of decontamination was directly dependent on the type of forage grasses.

Keywords׃ Soil; Bed; Pond; Casting; Botanical ground; White clover; E. coli; S. dublin
 

References

Atkins, C. G. (2011). The Study of Fish Diseases. Transactions of the American Fisheries Society, 30, 1901(1), 82-89. doi: 10.1577/1548-8659(1901)31[82:TSOFD]2.0.CO;2

Barret, M., Morrissey, J. P., & O’Gara, F. (2011). Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biology and Fertility of Soils, 47(7), 729-743. doi: 10.1007/s00374-011-0605-x

Berg, G., Eberl, L., & Hartmann, A. (2005). The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol., 7(11), 1673-1685. doi: 10.1111/j.1462-2920.2005.00891.x

Berg, G., & Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol., 68(1), 1-13. doi: 10.1111/j.1574-6941.2009.00654.x

Bostock, J., McAndrew, B., Richards, R., Jauncey, K., Telfer, T., Lorenzen, K., Little, D., Ross, L., Handisyde, N., Gatward, I., & Corner, R. (2010). Aquaculture: global status and trends. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2897-2912. doi: 10.1098/rstb.2010.0170

Broeckling, C. D., Broz, A. K., Bergelson, J., Manter, D. K., & Vivanco, J. M. (2008). Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol., 74(3), 738-744. doi: 10.1128/AEM.02188-07

Buée, M., De Boer, W., van Overbeek, F. M., & Jurkevitch, E. (2009). The rhizosphere zoo: an overview of plant associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant and Soil, 321(1), 189-212. doi: 10.1007/s11104-009-9991-3

Céréghino, R., Boix, D., Cauchie, H. M., Martens, K., & Oertli, B. (2014). The ecological role of ponds in a changing world. Hydrobiologia, 723, 1-6. doi: 10.1007/s10750-013-1719-y

Cooke, S. J., Thorstad, E. B., & Hinch, S. G. (2004). Activity and energetics of free swimming fish: insights from electromyogram telemetry. Fish and fisheries, 5, 21-52. doi: 10.1111/j.1467-2960.2004.00136.x

de Bruijn, I., Liu, Y., Wiegertjes, G. F., & Raaijmakers, J. M. (2018). Exploring fish microbial communities to mitigate emerging diseases in aquaculture. FEMS Microbiol Ecol., 94(1). doi: 10.1093/femsec/fix161

Dimkpa, C., Weinand, T., & Asch, F. (2009). Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ., 32(12), 1682-1694. doi: 10.1111/j.1365-3040.2009.02028.x

Føre, M., Frank, K., Norton, T., Svendsen, E., Alfredsen, A., Dempster, T., Eguiraun, H., Watson, W., Stahl, A., Sunde, L. M., Schellewald, C., Skøien, K. R., Alver, M. O., & Berckmans, D. (2018). Precision fish farming: A new framework to improve production in aquaculture. Biosystems Engineering, 173, 176-193. doi: 10.1016/j.biosystemseng.2017.10.014

Gonçalves, A. A., & Gagnon, G. A. (2011). Ozone Application in Recirculating Aquaculture System: An Overview. Ozone: Science & Engineering, 33(5), 345-367. doi: 10.1080/01919512.2011.604595

Hossain, M. B., Amin, S. M. N., Shamsuddin, M., & Minar, M. H. (2013). Use of Aqua-chemicals in the Hatcheries and Fish Farms of Greater Noakhali, Bangladesh. Asian Journal of Animal and Veterinary Advances, 8(2), 401-408. doi: 10.3923/ajava.2013.401.408

Hossain, M. K., Islam, K. T., Hossain, M. D., & Rahman, M. H. (2011). Environmental impact assessment of fish diseases on fish production. Journal of Science Foundation, 9(1-2), 125-131. doi: 10.3329/jsf.v9i1-2.14655

Jaemwimol, P., Sirikanchana, K., Tattiyapong, P., Mongkolsuk, S., & Surachetpong, W. (2019). Virucidal effects of common disinfectants against tilapia lake virus. J Fish Dis., 42(10), 1383-1389. doi: 10.1111/jfd.13060

Jankowski, K., Truba, M., Jankowska, J., Czeluscinski, W., Wisniewska-Kadzajan, B., ….Matsyura, A. (2018a). Effects of soil conditioners on lawn grass growth in different year seasons. Applied Ecology and Environmental Research, 16(4), 3755-3765. doi:10.15666/aeer/1604_37553765

Jankowski, K., Malinowska, E., Wiśniewska-Kadżajan, B., Jankowska, J., Truba, M., …Matsyura, A. (2018b). The effects of soil conditioners on grass colour throughout the growing season. Applied Ecology and Environmental Research, 16(4), 3981-3992. doi:10.15666/aeer/1604_39813992

Jussila, J., Toljamo, A., Makkonen, J., Kukkonen, H., & Kokko, H. (2014). Practical disinfection chemicals for fishing and crayfishing gear against crayfish plague transfer. Knowl Manag Aquat Ecosyst., 413, 2-12. doi: 10.1051/kmae/2014002

Marshall, A. H., Collins, R. P., Humphreys, M. W., & Scullion, J. (2016). A new emphasis on root traits for perennial grass and legume varieties with environmental and ecological benefits. Food Energy Secur., 5(1), 26-39. doi: 10.1002/fes3.78

Mon-On, N., Surachetpong, W., Mongkolsuk, S., & Sirikanchana, K. (2018). Roles of water quality and disinfectant application on inactivation of fish pathogenic Streptococcus agalactiae with povidone iodine, quaternary ammonium compounds and glutaraldehyde. J Fish Dis., 41(5), 783-789. doi: 10.1111/jfd.12776

Nunan, N., Daniell, T. J., Singh, B. K., Papert, A., McNicol, J. W., & Prosser, J. I. (2005). Links between plant and rhizoplane bacterial communities in grassland soils, characterized using molecular techniques. Applied and Environmental Microbiology, 71(11), 6784-6792. doi: 10.1128/AEM.71.11.6784-6792.2005

Opiyo, M. A., Marijani, E., Muendo, P., Odede, R., Leschen, W., & Charo-Karisa, H. (2018). A review of aquaculture production and health management practices of farmed fish in Kenya. International Journal of Veterinary Science and Medicine, 6(2), 141-148. doi: 10.1016/j.ijvsm.2018.07.001

Paliy, A. P., Ishchenko, K. V., Marchenko, M. V., Paliy, A. P., & Dubin, R. A. (2018). Effectiveness of aldehyde disinfectant against the causative agents of tuberculosis in domestic animals and birds. Ukrainian Journal of Ecology, 8(1), 845-850. doi: 10.15421/2018_283

Paliy, A. P., Stegniy, B. T., Muzyka, D. V., Gerilovych, A. P., & Korneykov, O. M. (2016). The study of the properties of the novel virucidal disinfectant. Agricultural Science and Practice, 3(3), 41-47. doi: 10.15407/agrisp3.03.041

Paliy, A. P., Zavgorodniy, A. I., Stegniy, B. T., & Gerilovych, A. P. (2015). A study of the efficiency of modern domestic disinfectants in the system of TB control activities. Agricultural Science and Practice, 2(2), 26-31. doi: 10.15407/agrisp2.02.026

Popp, J., Békefi, E., Duleba, S., & Oláh, J. (2019). Multifunctionality of pond fish farms in the opinion of the farm managers: the case of Hungary. Reviews in Aquaculture, 11(3), 840-847. doi: 10.1111/raq.12260

Pulkkinen, K., Suomalainen, L. R., Read, A. F., Ebert, D., Rintamäki, P., & Valtonen, E. T. (2010). Intensive fish farming and the evolution of pathogen virulence: the case of columnaris disease in Finland. Proc Biol Sci., 277(1681), 593-600. doi: 10.1098/rspb.2009.1659

Rahman, A. M. D., Rahman, H. M. D., Yeasmin, S. M., Asif, A. A., & Mridha, D. (2017). Identification of causative agent for fungal infection and effect of disinfectants on hatching and survival rate of Bata (Labeo. Bata) larvae. Adv Plants Agric Res., 7(4), 342-349. doi: 10.15406/apar.2017.07.00264

Rosa Rdos, S., Aguiar, A. C., Boëchat, I. G., & Gücker, B. (2013). Impacts of fish farm pollution on ecosystem structure and function of tropical headwater streams. Environ Pollut., 174, 204-213. doi: 10.1016/j.envpol.2012.11.034

Sieben, E. J. J., Collins, N. B., Corry, F. T. J., Kotze, D. C., Job, N., Muasya, A. M., Venter, C. E., Mtshali, H., Zondo, S. A., Janks, M., & Pretorius, L. (2016). The vegetation of grass lawn wetlands of floodplains and pans in semi-arid regions of South Africa: Description, classification and explanatory environmental factors. South African Journal of Botany, 104, 215-224. doi: 10.1016/j.sajb.2015.11.003

Straus, D. L., Meinelt, T., Farmer, B. D., & Beck, B. H. (2012). Acute toxicity and histopathology of channel catfish fry exposed to peracetic acid. Aquaculture, 342-343, 134-138. doi: 10.1016/j.aquaculture.2012.02.024

Suo, A., Cao, K., Zhao, J., & Lin, Y. (2015). Study on Impacts of Sea Reclamation on Fish Community in Adjacent Waters: A Case in Caofeidian, North China. Journal of Coastal Research, 73, 183-187. doi: 10.2112/SI73-032.1

Verner-Jeffreys, D. W., Joiner, C. L., Bagwell, N. J., Reese, R. A., Husby, A., & Dixon, P. F. (2009). Development of bactericidal and virucidal testing standards for aquaculture disinfectants. Aquaculture, 286(3-4), 190-197. doi: 10.1016/j.aquaculture.2008.10.001.

Share this article