Influence of antibacterial agents on vaccine strains of Anthrax


H. A. Zaviryukha, U. M. Yanenko, T. B. Vasylieva, N. I. Kosyanchuk, N. H. Sorokina, H. V. Kozlovska, O. L. Kravtsova, O. O. Marchuk, L. M. Muzykina

Neutralization of spore-forming pathogenic microflora is carried out by solutions of disinfectants repeatedly. Antibacterial agents when used uncontrolled can reduce the sensitivity of microorganisms and as a result cause severe complications. Of considerable interest is the combined use of antibiotics with antibacterial drugs of plant origin. The use of antimicrobial agents of plant origin is due to their low toxicity, the possibility of long-term use, greater availability and ability to biodegradation, while synthetic drugs: antibiotics, fluoroquinolones, antiseptics have strong activity. Therefore, of great interest is the combined use of antibiotics with antibacterial drugs of plant origin. The object of our study were vaccine strains of the anthrax pathogen: B. anthracis K-79Z, B. anthracis 34F2 and anthrax-like bacilli B. cereus 8035, in spore form, disinfectants – sterilium (classic pur), ethanol 96%, alcohol solutions chlorophyllipt (1%) and propolis (7%). Studies have shown that bacteria of the strain B. cereus 8035 were insensitive to disinfectants of non-vegetable origin in the native and diluted state at exposures of 30, 60, 120 minutes and 24 hours of incubation, as evidenced by the intensive growth of the culture on meat-peptone agar (MPA). In the study of the disinfecting effect of 96% ethanol and sterile on the B. anthracis  K-79Z strain, it was found that after exposure for 30, 60, 120 minutes and 24 hours, bacterial growth is recorded when using the native and disinfectant. Strains B. anthracis K-79Z and B. cereus 8035 were found to be more resistant to the action of disinfectants of plant and synthetic origin. In the future, we plan to continue the study of strains of the anthrax pathogen and anthrax bacilli on the sensitivity to disinfectants and to determine the relationship between the toxigenic characteristics of the strains.

Keywords: B. anthracis; Ethanol 96%; Sterilium; Propolis; Chlorophyllipt


Counotte, M.J., Minbaeva, G., Usubalieva, J., Abdykerimov, K., & Torgerson, P.R. (2016). The burden of zoonoses in Kyrgyzstan: a systematic review. PLoS Negl Trop Dis;10 (7):e0004831.  

Dixon, T.C., Meselson, M., Guillemin, J., & Hanna, P.C. (1999). Anthrax. New England Journal of Medicine, September 9, 341(11):815-826.  

Hanna, P. (1998). Anthrax pathogenesis and host response. Curr Top Microbiol Immunol, 225:13-35.  

Shadomy, S., El Idrissi, A., Raizman, E., Bruni, M., Palamara, E., Pittiglio, C. et al. (2016). Anthrax outbreaks: a warning for improved prevention, control and heightened awareness. empres watch.;37(september):8.  

Hatami, H., Ramazankhani, A., & Mansoori, F. (2010). Two cases of gastrointestinal anthrax with an unusual presentation from Kermanshah (Western Iran). Arch Iran Med.;13(2):156-9.

Hashemi, S.A., Azimian, A., Nojumi, S., Garivani, T., Safamanesh, S., & Ghafouri, M.A. (2015.) Case of Fatal Gastrointestinal Anthrax in North Eastern Iran Arch Iran Med. 2010 Mar;13(2):156-9.   

Cizauskas, C.A., Bellan, S.E., Turner, W.C., Vance, R.E., & Getz, W.M. (2014). Frequent and seasonally variable sublethal anthrax infections are accompanied by short-lived immunity in an endemic system. J. Anim Ecol. Sep; 83(5): 1078-1090.  

Owen, J.L., Yang, T., & Mohamadzadeh, M. (2015). New insights into gastrointestinal anthrax infection. Trends Mol Med.  Mar; 21(3):154-63.  

Swartz, M.N. (2002). Recognition and management of anthrax—an update. N Engl J Med Feb 21;346(8):634.

Keim, P., Price, L.B., Klevytska, A.M., Smith, K.L., Schupp, J.M., Okinaka, R., et al. (2000). Multiple-locus variable-number tandem repeat analysis reveals genetic relationships within Bacillus anthracis. J Bacteriol.  182:2928-36.  

Prokopishyn, V.K. (2015). Shho treba znaty` pro sy`birku [What you need to know about Anthrax] Vetery`narna medy`cy`na Ukrayiny` – Veterinary Medicine of Ukraine, 2 (228):35-37.  

Yashchenko, M.F., Zaviriukha, A.I., Kovalenko, V.L., Chekhun, A.I., Bobylov V.M., & Shlapak Yu. V. (2009). Vplyv dezinfikuiuchykh zasobiv na aerobnu sporoutvoriuiuchu mikrofloru. [Influence of disinfectants on aerobic microflora]. Veterynarna biotekhnolohiia – Veterinary biotechnology, Vol. 14: 1-4.  

Furtat, I.M., Nivievska, T.V., Horbatko, L.,O. & Mykhalskyi, L.O. (2004). Dezynfikuiucha diia perekysu vodniu ta lizoforminu na hramnehatyvni bakterii, yaki kontaminuiut vyrobnytstva kharchovoi promyslovosti [Disinfecting effect of hydrogen peroxide and lysoformin on gram-negative bacteria that contaminate food industry production]. Magisterium. Pryrodnychi nauky – Magisterium. Natural sciences. National University Kyiv-Mohyla Academy. Vol. 16. 29-35.  

Cavallo, J.D., Ramisse, F., Girardet, M., Vaissaire, J., Mock, M., & Hernandez, E. (2002). Antibiotic susceptibilities of 96 isolates of Bacillus anthracis isolated in France between 1994 and 2000. Antimicrob Agents Chemother. Jul;46(7):2307-2309.   

Salmanov, A. H., &  Mariievskyi, F.M. (2011). Problema antybiotykorezystentnosti ta shliakhy yikh vyrishennia v Ukraini. [The problem of antibiotic resistance and ways of their solution in Ukraine]. Intra-hospital infections and mechanisms of resistance of their pathogens to antimicrobials: materials inter. Vnutrishno likarniani infektsii ta mekhanizmy rezystentnosti yikh zbudnykiv do antymikrobnykh preparativ: materialy mizhnar. nauk.-prakt. konf., m. Kyiv, 29-30 veres. K., 2011. – Research Practice Conf., Kyiv, September. 29-30. 7-11. (in Ukrainian).

Zatylnikova, O.O., Osolodchenko, T.P., & Kovalov, V.M. (2010). Antymikrobna aktyvnist ekstraktiv Iris pseudacorus L. [ANTIMICROBIAL ACTIVITY OF IRIS PSEUDACORUS L. EXTRACTS]. Annals of Mechnikov Institute. 4. 43-47. (in Ukrainian).

Khadzhyeva, Z.D., Teunova E.A. & Krakhmalev Y.S. (2010). Yzuchenye antymykrobnoi aktyvnosty lekarstvenn

Share this article