Influence of new frost-resistant disinfectant on the ultrastructural organization of atypical mycobacteria

Abstract

A.P. Paliy, A.I. Zavgorodnii, M.V. Kalashnyk, O.I. Shkromada, Z.V. Rybachuk, R.V. Dolbanosova, L.M. Kovalenko, Ye.M. Livoshchenko, L.P. Livoshchenko, Yu.V. Baidevliatova, Yu.K. Dunaiev, A.P. Palii, T.I. Nedzheria

 

The article presents the results of experimental studies of M. kansasii, M. gordonae, M. xenopi, M. flavescens ultrastructure in normal conditions and after exposure of new anti-frost disinfectant. A glutaraldehyde is an active substance, and a sodium formate used as an antifreeze. It was shown that occurred changes are characterized by destruction of microcapsule, cell wall and cytoplasmic membrane, formation of vacuoles and osmiophil inclusions in the cytoplasm of mycobacteria cells after an exposure of the frost-resistant disinfectant. A dissolution of the microcapsule and cell wall was noted under the action of a disinfectant on M. kansasii. Cells partially lost the cytoplasmic membrane. The cytoplasm had the appearance of dark finely granular inclusions. The nucleoid region was not clearly visible. The appearance of vacuoles in the cytoplasm of cells that had a low electron density was observed in the test culture of M. gordonae after application of the disinfectant. The effect of disinfectants on M. xenopi causes the destruction of the microcapsule and cell wall in almost all microbial cells. The cytoplasm contained small granular substances of different electron densities. The complete disappearance of the microcapsule and cell wall was observed in the culture of M. flavescens after action of disinfectant. It was lead to release of the cytoplasm. The cytoplasm gains density and contains vacuoles, as well as a fine-granular substance. The nucleoid region is blurred and densified. The developed disinfectant composition can be used in the complex of veterinary and sanitary measures for the control and prevention of tuberculosis of farm animals at ambient temperatures up to minus 20°?.

Keywords: Atypical Mycobacterium; Electron microscopy; Ultrastructure; Cell wall; Nucleoid; Disinfectant; Antifreeze; Low temperature
 

References

 

Abrahams, K. A., & Besra, G. S. (2018). Mycobacterial cell wall biosynthesis: a multifaceted antibiotic target. Parasitology, 145(2), 116-133. doi: 10.1017/S0031182016002377

Alderwick, L. J., Harrison, J., Lloyd, G. S., & Birch, H. L. (2015). The Mycobacterial Cell Wall-Peptidoglycan and Arabinogalactan. Cold Spring Harbor perspectives in medicine, 5(8):a021113. doi: 10.1101/cshperspect.a021113

Alsteens, D., Verbelen, C., Dague, E., Raze, D., Baulard, A. R., & Dufrêne, Y. F. (2008). Organization of the mycobacterial cell wall: a nanoscale view. Pflügers Archiv - European Journal of Physiology, 456, 117-125. doi: 10.1007/s00424-007-0386-0

Basybekova, S. Z., Bazarbayeva, M. B., Yespembetov, B. A., Mussaeva, A., Kanatbayev, S. G., Romashev, K. M., Dossanova, A. K., Yelekeyev, T. A., Akmatova, E. K., & Syrym, N. S. (2018). Diagnostics of tuberculosis and differentiation of nonspecific tuberculin reactions in animals. Brazilian journal of microbiology, 49(2), 329-335. doi: 10.1016/j.bjm.2017.07.004

Best, M., Sattar, S. A., Springthorpe, V. S., & Kennedy, M. E. (1990). Efficacies of Selected Disinfectants against Mycobacterium tuberculosis. Journal of Clinical Microbiology, 28(10), 2234-2239. doi: 10.1128/JCM.28.10.2234-2239.1990

Bondarchuk, A. O., Paliy, A. P., & Blazheyevskiy, M. Ye. (2019). Determination of acute toxicity of the «Bondarmin» disinfectant. Journal for Veterinary Medicine, Biotechnology and Biosafety, 5(20), 26-30. doi: 10.36016/JVMBBS-2019-5-2-5

Carrisoza-Urbina, J., Morales-Salinas, E., Bedolla-Alva, M. A., Hernández-Pando, R., & Gutiérrez-Pabello, J. A. (2019) Atypical granuloma formation in Mycobacterium bovis-infected calves. PLoS ONE, 14(7):e0218547. doi: 10.1371/journal.pone.0218547

Chiaradia, L., Lefebvre, C., Parra, J., Marcoux, J., Burlet-Schiltz, O., Etienne, G., Tropis, M., & Daffé, M. (2017). Dissecting the mycobacterial cell envelope and defining the composition of the native mycomembrane. Scientific Reports, 7(1), 12807. doi: 10.1038/s41598-017-12718-4

Claeys, T. A., & Robinson, R. T. (2018). The Many Lives of Nontuberculous Mycobacteria. Journal of Bacteriology, 200(11):e00739-17. doi: 10.1128/JB.00739-17

Cook, J. L. (2010). Nontuberculous mycobacteria: opportunistic environmental pathogens for predisposed hosts. British Medical Bulletin, 96(1), 45-59. doi: 10.1093/bmb/ldq035

Gcebe, N., Rutten, V., Gey van Pittius, N. C., & Michel, A. (2013). Prevalence and distribution of non-tuberculous Mycobacteria (NTM) in cattle, African buffaloes (Syncerus Caffer) and their environments in South Africa. Transboundary and emerging diseases, 60(1), 74-84. doi: 10.1111/tbed.12133

Henkle, E., & Winthrop, K. L. (2015). Nontuberculous Mycobacteria Infections in Immunosuppressed Hosts. Clinics in chest medicine, 36(1), 91-99. doi: 10.1016/j.ccm.2014.11.002

Imaeda, T., Kanetsuna, F., & Galindo, B. (1968). Ultrastructure of cell walls of genus Mycobacterium. Journal of ultrastructure research, 25(1), 46-63. doi: 10.1016/s0022-5320(68)80059-0

Jackson, M. (2014). The mycobacterial cell envelope-lipids. Cold Spring Harbor perspectives in medicine, 4(10):a021105. doi: 10.1101/cshperspect.a021105

Jarlier, V., & Nikaido, H. (1994). Mycobacterial cell wall: structure and role in natural resistance to Antibiotics. FEMS microbiology letters, 123(1-2), 11-18. doi: 10.1111/j.1574-6968.1994.tb07194.x

Kalscheuer, R., Palacios, A., Anso, I., Cifuente, J., Anguita, J., Jacobs, W. R. Jr., Guerin, M. E., & Prados-Rosales, R. (2019). The Mycobacterium tuberculosis capsule: a cell structure with key implications in pathogenesis. The Biochemical journal, 476(14), 1995-2016. doi: 10.1042/BCJ20190324

Kassich, V., Levchenko, A., Baydevliatov, Y., Rebenko, G., Golovko, V., Kassich, O., Ushkalov, V., & Volosianko, O. (2017). Research of the exposure impact on mycobacteria ultrastructure and variability. Scientific Journal «ScienceRise», 11(40), 6-14. doi: 10.15587/2313-8416.2017.116675

Koh, W. J. (2017). Nontuberculous Mycobacteria-Overview. Microbiology spectrum, 5(1). doi: 10.1128/microbiolspec.TNMI7-0024-2016

Kriel, N. L., Gallant, J., van Wyk, N., van Helden, P., Sampson, S. L., Warren, R. M., & Williams, M. J. (2018). Mycobacterial nucleoid associated proteins: An added dimension in gene regulation. Tuberculosis, 108, 169-177. doi: 10.1016/j.tube.2017.12.004

Kumar, V., Sachan, T. K., Sharma, P., & Rawat, K. D. (2015). Ultrastructural morphologic changes in mycobacterial biofilm in different extreme condition. Ultrastructural pathology, 39(1), 38-48. doi: 10.3109/01913123.2014.950780

Le Dantec, C., Duguet, J. P., Montiel, A., Dumoutier, N., Dubrou, S., & Vincent, V. (2002). Chlorine disinfection of atypical mycobacteria isolated from a water distribution system. Applied and environmental microbiology, 68(3), 1025-1032. doi: 10.1128/aem.68.3.1025-1032.2002

Maitra, A., Munshi, T., Healy, J., Martin, L. T., Vollmer, W., Keep, N. H. & Bhakta, S. (2019). Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles’ heel for the TB-causing pathogen. FEMS Microbiology Reviews, 43(5), 548-575. doi: org/10.1093/femsre/fuz016

Niederweis, M., Danilchanka, O., Huff, J., Hoffmann, C., & Engelhardt, H. (2010). Mycobacterial outer membranes: in search of proteins. Trends in microbiology, 18(3), 109-116. doi: 10.1016/j.tim.2009.12.005

Paliy, A. (2014). Determination of specific stability Mycobacterium to chlorine containing disinfectant preparation. Bulletin of National Agrarian University of Armenia, 2, 84-86.

Paliy, A. P. (2018). Differential sensitivity of Mycobacterium to chlorine disinfectants. Mikrobiol. Z., 80(2), 104-116. doi: 10.15407/microbiolj80.02.104 (In Ukrainian)

Paliy, A., & Dubin, R. (2016). Study of species resistance to some disinfectants in atypical Mycobacterium. Bulletin of National Agrarian University of Armenia, 2(54), 25-27.

Paliy, A. P. (2013). Epizootological monitoring of bovine tuberculosis and scientific-experimental substantiation of the development and application of disinfectants. Kharkiv: NSC IECVM. (in Ukrainian)

Paliy, A. P., Ishchenko, K. V., Marchenko, M. V., Paliy, A. P., & Dubin, R. A. (2018). Effectiveness of aldehyde disinfectant against the causative agents of tuberculosis in domestic animals and birds. Ukrainian Journal of Ecology, 8(1), 845-850. doi: 10.15421/2018_283

Paliy, A. P., Stegniy, B. T., Sinica, O. V., & Vedmid, O. V. (2017). Patent ??? 117012 UA, ??PK ?61L 2/16. Composition for disinfection of livestock objects at freezing temperatures / applicant and patentee NSC IECVM. - ???u 2017 00102; pend. 03.01.2017; publ. 12.06.2017, Bul. ??? 11, p. 3. (In Ukrainian)

Paliy, A. P., Zavgorodniy, A. I., & Bondarchuk, A. O. (2019). Bactericidal properties of the “DOROSEPT SUPER” agent for mycobacteria. Bulletin of Poltava State Agrarian Academy, 4(95), 159-165. doi: 10.31210/visnyk2019.04.20 (In Ukrainian)

Paliy, A. P., Zavgorodniy, A. I., Stegniy, B. T., & Gerilovych, A. P. (2015). A study of the efficiency of modern domestic disinfectants in the system of TB control activities. Agricultural Science and Practice, 2(2), 26-31. doi: 10.15407/agrisp2.02.026

Paliy, A. P., Zavgorodniy, A. I., Stegniy, B. T., & Palii, A. P. (2020). Scientific and methodological grounds for controlling the development and use of disinfectants. Monograph. Kharkiv: Miskdruk. (in Ukrainian)

Pavlenko, E., Barbova, A., Hovhannesyan, A., Tsenilova, Z., Slavuckij, A., Shcherbak-Verlan, B., Zhurilo, A., Vitek, E., Skenders, G., Sela, I., Cabibbe, A. M., Cirillo, D. M., de Colombani, P., Dara, M., Dean, A., Zignol, M., & Dadu, A. (2018). Alarming Levels of Multidrug-Resistant Tuberculosis in Ukraine: Results From the First National Survey. International Journal of Tuberculosis and Lung Disease, 22(2), 197-205. doi: 10.5588/ijtld.17.0254

Raphaka, K., Sánchez-Molano, E., Tsairidou, S., Anacleto, O., Glass, E. J., Woolliams, J. A., Doeschl-Wilson, A., & Banos, G. (2018). Impact of Genetic Selection for Increased Cattle Resistance to Bovine Tuberculosis on Disease Transmission Dynamics. Frontiers in veterinary science, 5(237). doi: 10.3389/fvets.2018.00237

Rastogi, N., Legrand, E., & Sola, C. (2001). The mycobacteria: an introduction to nomenclature and pathogenesis. Revue scientifique et technique, 20(1), 21-54. doi: 10.20506/rst.20.1.1265.

Reichman, L. B. (2017). The Tuberculosis Taboo. The international journal of tuberculosis and lung disease, 21(3), 251-255. doi: 10.5588/ijtld.16.0621

Rutala, W. A., Cole, E. C., Wannamaker, N. S., & Weber, D. J. (1991). Inactivation of Mycobacterium tuberculosis and Mycobacterium bovis by 14 hospital disinfectants. The American Journal of Medicine, 91(3,2), 267-271. doi: 10.1016/0002-9343(91)90380-G

Shinoda, N., Mitarai, S., Suzuki, E., & Watanabe, M. (2016). Disinfectant-susceptibility of multi-drug-resistant Mycobacterium tuberculosis isolated in Japan. Antimicrobial resistance and infection control, 5:3. doi:10.1186/s13756-016-0102-y

Sulis, G., Roggi, A., Matteelli, A., &. Raviglione, M. C. (2014). Tuberculosis: Epidemiology and Control. Mediterranean journal of hematology and infectious diseases, 6(1):e2014070. doi: 10.4084/MJHID.2014.070

Traag, B. A., Driks, A., Stragier, P., Bitter, W., Broussard, G., Hatfull, G., Chu, F., Adams, K. N., Ramakrishnan, L., & Losick, R. (2010). Do Mycobacteria Produce Endospores? Proceedings of the National Academy of Sciences of the United States of America, 107(2), 878-881. doi: 10.1073/pnas.0911299107

Ukhovskyi, V. V., Paliy, A. P., Tarasov, O. A., Ukhovska, T. M., & Paliy, A. P. (2019). Using of Glycerol and DMSO for Leptospira interrogans Cryopreservation. Problems of Cryobiology and Cryomedicine, 29(1), 102-106. doi: 10.15407/cryo29.01.102

Villarreal-Ramos, B., Berg, S., Whelan, A., Holbert, S., Carreras, F., Salguero, F. J., Khatri, B. L., Malone, K., Rue-Albrecht, K., Shaughnessy, R., Smyth, A., Ameni, G., Asefa, A., Sarradin, P., Winter, N., Vordermeier, M., & Gordon, S. V. (2018). Experimental infection of cattle with Mycobacterium tuberculosis isolates shows the attenuation of the human tubercle bacillus for cattle. Scientific Reports, 8(894). doi: 10.1038/s41598-017-18575-5

Vincent, A. T., Nyongesa, S., Morneau, I., Reed, M. B., Tocheva, E. I., & Veyrier, F. J. (2018). The Mycobacterial Cell Envelope: A Relict From the Past or the Result of Recent Evolution? Frontiers in microbiology, 9, 2341. doi: 10.3389/fmicb.2018.02341

Zavgorodniy, A. I., Kalashnik, N. V., Kochmarskiy, V. A., Busol, V. O., Paliy, A. P., Tihonov, P. M., & Gorjeev, V. M. (2007). Determination of the bactericidal properties of disinfectants, disinfection and quality control tuberculosis farm animals. Kharkiv: NSC IEKVM. (In Ukrainian)

Zavgorodniy, A. I., Stegniy, B. T., Paliy, A. P., Gorjeev, V. M., & Smirnov, A. M. (2013). Scientific and practical aspects of disinfection in veterinary medicine. Kharkiv: FOP Brovin O.V. (in Ukrainian)

Share this article