Influence of various prebiotic components on the main growth indicators of probiotic bacteria

Abstract

A.P. Paliy, S.A. Gujvinska, L.P. Livoshchenko, D.V. Kytaieva, Y.M. Opanasenko, R.Y. Tymoshenko, O.G. Shvets, V.Y. Kushnir, M.V. Anforova, A.P. Palii

The study aimed to select prebiotic components and determine their effect on the primary growth rates of probiotic bacteria (lactobacilli, bifidobacteria). Strains Bifidobacterium adolectentis No 17-316 and Lactobacillus plantarum No 7-317 were used to create the bacterial mixture. When determining the effectiveness of various sources of sugar on the intensity of growth parameters of lactic acid bacteria, experimental nutrient media were prepared with the addition of lactulose, inulin, fructose in amounts of 1.0%, 1.5%, and 2.5%. It has been experimentally proved that the use of lactulose at a concentration of 1.5% as a prebiotic component in the bacterial mixture based on lactobacilli L. plantarum No 7-317 and bifidobacteria B. adolectentis No 17-316 (1:2) increases the biological activity of the mixture: acid formation activity – by 10±2%, the number of live bacteria – by 15±2%. It has been established that lactulose has a higher bifidogenic and lactogenic effect than other sources of sugar (inulin, fructose). Based on the study of morphological characteristics of bacterial cultures of symbiotic types of interaction and study of the bifidogenic and lactogenic ability of some sugars, the composition of the bacterial mixture of therapeutic and prophylactic action has been substantiated: L. plantarum No 7-317 and B. adolectentis No 17-316 in the ratio 1:2 and prebiotic component – lactulose (1.5%). The optimal growth parameters for bifidobacteria – cultivation temperature 38.7±0.4°C and pH of the medium 6.7±0.3, and for lactobacilli – cultivation temperature 37.3±0.2°C and pH of the medium 7.2±0.1.

Keywords: lactulose, bifidobacteria, lactobacilli, concentration, colony-forming units, temperature, pH.
 

References

 

Apás, A. L., Dupraz, J., Ross, R., González, S. N., & Arena, M. E. (2010). Probiotic administration effect on fecal mutagenicity and microflora in the goat's gut. J Biosci Bioeng., 110(5), 537-540. doi: 10.1016/j.jbiosc.2010.06.005

Atia, A., Gomaa, A., Fliss, I., Beyssac, E., Garrait, G., & Subirade, M. (2016). A prebiotic matrix for encapsulation of probiotics: physicochemical and microbiology study. Journal of Microencapsulation, 33(1), 89-101. doi: 10.3109/02652048.2015.1134688

Bindels, L. B., Delzenne, N. M., Cani, P. D., & Walter, J. (2015). Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol., 12(5), 303-310. doi: 10.1038/nrgastro.2015.47

Caggianiello, G., Kleerebezem, M., & Spano, G. (2016). Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. Appl. Microbiol. Biotechnol., 100, 3877-3886. doi: 10.1007/s00253-016-7471-2

Cave, N. J. (2003). Chronic inflammatory disorders of the gastrointestinal tract of companion animals. N Z Vet J., 51(6), 262-274. doi: 10.1080/00480169.2003.36380

Chae, JP., Pajarillo, EA., Oh, JK., Kim, H., & Kang, DK. (2016). Revealing the combined effects of lactulose and probiotic enterococci on the swine faecal microbiota using 454 pyrosequencing. Microb Biotechnol., 9(4), 486-495. doi: 10.1111/1751-7915.12370

Collins, M. D., & Gibson, G. R. (1999). Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am. J. Clin. Nutr., 69, 1052S-1057S. doi: 10.1093/ajcn/69.5.1052s

de Souza Oliveira, R. P., Perego, P., de Oliveira, M. N., & Converti, A. (2012). Effect of inulin on the growth and metabolism of a probiotic strain of Lactobacillus rhamnosus in coculture with Streptococcus thermophilus. LWT, 47(2), 358-363. doi: 10.1016/j.lwt.2012.01.031

DuPont, A. W., Richards, D. M., Jelinek, K. A., Krill, J. T., Rahimi, E. F., & Ghouri, Y. A. (2014). Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease. Clin. Exp. Gastroenterol., 7, 473-487. doi: 10.2147/CEG.S27530

Gaggìa, F., Mattarelli, P., & Biavati, B. (2010). Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol., 141(Suppl 1), 15-28. doi: 10.1016/j.ijfoodmicro.2010.02.031

Gaucher, F., Bonnassie, S., Rabah, H., Marchand, P., Blanc, P., Jeantet, R., & Jan, G. (2019). Review: Adaptation of Beneficial Propionibacteria, Lactobacilli, and Bifidobacteria Improves Tolerance Toward Technological and Digestive Stresses. Front. Microbiol., 10, 841. doi: 10.3389/fmicb.2019.00841

Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017). The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews. Gastroenterology & Hepatology, 14(8), 491-502. doi: 10.1038/nrgastro.2017.75

Gibson, G. R., Scott, K. P., Rastall, R. A., Tuohy, K. M., Hotchkiss, A., Dubert-Ferrandon, A., Gareau, M., Murphy, E. F., Saulnier, D., Loh, G., Macfarlane, S., Delzenne, N., Ringel, Y., Kozianowski, G., Dickmann, R., Lenoir-Wijnkook, I., Walker, C. & Buddington, R. (2010). Dietary prebiotics: current status and new definition. Food Science and Technology Bulletin: Functional Foods, 7, 1-19.

Grajek, W., Olejnik, A., & Sip, A. (2005). Probiotics, prebiotics and antioxidants as functional foods. Acta Biochim Pol., 52(3), 665-671.

Gujvinska, S. ?., & Paliy, A. P. (2018). Determination of antagonistic and adhesive properties of lactobacterium and bifidobacterium. Mikrobiolohichnyi Zhurnal, 80(1), 36-44. doi: 10.15407/microbiolj80.01.036

Gujvinska, S. O., Paliy, A. P., Dunaeva, O. V., Paliy, A. P., & Berezhna, N. V. (2018). Biotechnology production of medium for cultivation and lyophilization of lactic acid bacteria. Ukrainian Journal of Ecology, 8(2), 5-11. doi: 10.15421/2018_302

Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews. Gastroenterology & Hepatology, 11(8), 506-514. doi: 10.1038/nrgastro.2014.66

Johnson, AC., & Meerveld B. G.-V. (2017). Critical Evaluation of Animal Models of Gastrointestinal Disorders. Handb Exp Pharmacol., 239, 289-317. doi: 10.1007/164_2016_120

Johnson, B. R., Synk, W., Jasper, W. C., & Müssen, E. (2014). Effects of high fructose corn syrup and probiotics on growth rates of newly founded honey bee colonies. Journal of Apicultural Research, 53, 1, 165-170. doi: 10.3896/IBRA.1.53.1.18

Kasianenko, O. I., Kasianenko, S. M., Paliy, A. P., Petrov, R. V., Kambur, M. D., … Palii, A. P. (2020). Application of mannan oligosaccaharides (Alltech Inc.) in waterfowl: optimal dose and effectiveness. Ukrainian Journal of Ecology, 10(3), 63-68. doi: 10.15421/2020_134

Langen, L. V., Mirjam, A. C., & Dieleman, L. A. (2009). Prebiotics in chronic intestinal inflammation. Inflamm Bowel Dis., 15(3), 454-462. doi: 10.1002/ibd.20737

Lomax, A. R., & Calder, P. C. (2009). Prebiotics, immune function, infection and inflammation: a review of the evidence. Br J Nutr., 101(5), 633-658. doi: 10.1017/S0007114508055608

Macfarlane, S., Macfarlane, G. T., & Cummings, J. T. (2006). Review article: prebiotics in the gastrointestinal tract. Aliment. Pharmacol. Ther., 24(5), 701-714. doi: 10.1111/j.1365-2036.2006.03042.x

Maiorano, G., Stadnicka, K., Tavaniello, S., Abiuso, C., Bogucka, J., & Bednarczyk, M. (2017). In ovo validation model to assess the efficacy of commercial prebiotics on broiler performance and oxidative stability of meat. Poult Sci., 96(2), 511-518. doi: 10.3382/ps/pew311

Modesto, M., D'Aimmo, M. R., Stefanini, I., Trevisi, P., Filippi, S., Casini, L., Mazzoni, M., Bosi, P., & Biavati, B. (2009). A novel strategy to select Bifidobacterium strains and prebiotics as natural growth promoters in newly weaned pigs. Livestock Science, 122, 248-258.

Olveira, G., & González-Molero, I. (2016). An update on probiotics, prebiotics and symbiotics in clinical nutrition. Endocrinol Nutr., 63(9), 482-494. doi: 10.1016/j.endonu.2016.07.006

Otles, S. (Ed.). (2014). Probiotics and Prebiotics in Food, Nutrition and Health (1st ed.). CRC Press. doi: 10.1201/b15561

Paliy, A. P., Gujvinska, S. O., Alrawashdeh, M. S., Shkromada, O. I., Dudchenko, Yu. A, Kovalenko, L. M., Plyuta, L. V., Franchuk-Kryva, L. O., Kushch L. L., & Matsenko, O. V. (2020a). Selection of technological regime and cryoprotector for lyophilization of lactobacteria (Lactobacillus spp.). Ukrainian Journal of Ecology, 10(4), 184-190. doi: 10.15421/2020_186

Paliy, A. P., Gujvinska, S. O., Livoshchenko, L. P., Nalivayko, L. I., Livoshchenko, Ye. M., Risovaniy, V. I., Dubin, R. A., Berezhna, N. V., Palii, A. P., & Petrov, R. V. (2020b). Specific composition of indigenous microflora (Lactobacillus spp., Bifidobacterium spp., Lactococcus spp.) in farm animals. Ukrainian. Journal of Ecology, 10(1), 43-48. doi: 10.15421/2020_7

Paliy, A. P., Gujvinska, S. A., Rodionova, K. O., Alekseeva, N. V., Ponomarenko, O. V., Alrawashdeh, M. S., Yeletskaya, T. A., Ponomarenko, G. V., Kushnir, V. Yu., & Palii, A. P. (2020c). Enhanced cultivation technology for lacto- and bifidobacteria. Ukrainian Journal of Ecology, 10(3), 83-87. doi: 10.15421/2020_137

Patel, S., & Goyal, A. (2012). The current trends and future perspectives of prebiotics research: a review. 3 Biotech, 2(2), 115-125. doi: 10.1007/s13205-012-0044-x

Rastall, R. A., & Gibson, G. R. (2015). Recent developments in prebiotics to selectively impact beneficial microbes and promote intestinal health. Curr Opin Biotechnol., 32, 42-46. doi: 10.1016/j.copbio.2014.11.002

Rycroft, C. E., Jones, M. R., Gibson, G. R., & Rastall, R. A. (2001). A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. J Appl Microbiol., 91(5), 878-887. doi: 10.1046/j.1365-2672.2001.01446.x

Saiyed, M. A., Joshi, R. S., Savaliya, F. P., Patel, A. B., Mishra, R. K., & Bhagora, N. J. (2015). Study on inclusion of probiotic, prebiotic and its combination in broiler diet and their effect on carcass characteristics and economics of commercial broilers. Veterinary world, 8(2), 225-231. doi: 10.14202/vetworld.2015.225-231

?li?ewska, K., Nowak, A., Barczy?ska, R., & Libudzisz, Z. (2013). Prebiotyki - definicja, w?a?ciwo?ci i zastosowanie w przemy?le. ?ywno??: Nauka-Technolog-Jako??, 1(86), 5-20. doi: 10.151.93/zntj/2013/86/005-020 (Poland)

Toghyani, M., Toghyani, M., & Tabeidian, S. A. (2011). Effect of probiotic and prebiotic as antibiotic growth promoter substitutions on productive and carcass traits of broiler chicks. Int. Conf. Food Eng. Biotechnol., 9, 82-86.

Walter, J. (2008). Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol., 74(16), 4985-4996. doi: 10.1128/AEM.00753-08

Wang, Y. (2009). Prebiotics: present and future in food science and technology. Food Research International, 42(1), 8-12. doi: 10.1016/j.foodres.2008.09.001

Zeng, Y., Zhang, J., Zhang, Y., Men, Y., Zhang, B., & Sun, Y. (2018). Prebiotic, Immunomodulating, and Antifatigue Effects of Konjac Oligosaccharide. J Food Sci., 83(12), 3110-3117. doi: 10.1111/1750-3841.14376

Share this article