Microfacies and paleoenvironmental analysis of lower to middle eocene sediments, west of Tafresh

Abstract

M.Y. Rad, H. Noroozpour

Lower to Middle Eocene outcrops of Naqusan section, located in the northwest of Tafresh, with a thickness of 110 meters chiefly encompasses sandy-marly limestone and tuff along with a low percentage of sedimentary rocks such as sandstone. Microfacies studies led to the identification of six carbonate microfacies related to three facies belts (shoal, lagoon and open marine). The general palaeogeographic context of this system was a marginal marine shelf setting with an inner platform that was very flat, ramp-like, with little topography but with local depressions. Regarding extensive presence of large benthic foraminifera and some algae, the studied section probably have been deposited in tropical waters.

Keywords: Paleoenvironment; eocene; naqusan; Tafresh

References:
Beavington-Penny, S. J., & Racey, A. (2004). Ecology of extant nummulitids and other larger benthic foraminifera application in Palaeonvivonmenta analysis: earthscience,V. 67, p, 219-265.
Flugel, E. (2010). Microfacies of Carbonate Rocks, Springer-Verlag, Berlin.
Folk, R.L. (1959). Practical petrographic classification of limestones: American Association of Petroleum Geologists Bulletin, v. 43, p. 1-38.
Geel, T. (2000). Recognition of stratigraphic sequences in carbonate platform and slope deposits: empirical models based on microfacies analysis of Palaeogene deposits in southeastern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 155:211-238.
Hajian. (1997). Geology of Iran, Paleocene and Eocene in Iran.
Hallock, P., & Glenn E. C. (1986). Larger foraminifera: a tool for paleoenvironmental analysis of Cenozoic depositional facies. Palaios 1:55-64.
Höntzsch, S., Scheibner, C., Kuss, J., Marzouk, A. M., & Rasser, M. W. (2011). Tectonically driven carbonate ramp evolution at the southern Tethyan shelf: The Lower Eocene succession of the Galala Mountains, Egypt. Facies, 57(1), 51-72. ‏
Hottinger, L. (1998). Shallow benthic foraminifera at the Paleocene-Eocene boundary. Strata 9:61-64.
Keheila, E. A., & El-Ayyat, A. A. M. (1990). Lower Eocene carbonate facies, environments and sedimentary cycles in Upper Egypt: evidence for global sea-level changes. Palaeogeogr Palaeoclimatol Palaeoecol 81:333-347.
Koehrer, B., Zeller, M., Aigner, T., Poeppelreiter, M., Milroy, P., Forke, H., & Al-Kindi, S., (2010). Facies and stratigraphic framework of a Khuff outcrop equivalent: Saiq and Mahil formations, Al Jabal al-Akhdar,Sultanate of Oman, Journal of GeoArabia, v. 15, no. 2, 2010, p. 91-156.
Loucks, R. G., Moody, R. T. J., Bellis, J. K., & Brown, A. A. (1998). Regional depositional setting and pore network systems of the El Garia Formation (Metlaoui Group, Lower Eocene), offshore Tunisia. In: Macgregor DS, Moody RTJ, Clark-Lowes DD (eds) Petroleum geology of North Africa. Geological Society Special Publication 132, pp 355-374.
McBride, E. F., Abdel-Wahab, A., El-Younsy, & A. R. M., (1999). Origin of spheroidal chert nodules, Drunka Formation (Lower Eocene), Egypt. Sedimentology 46:733-755.
Racey, A. (1994). Biostratigraphy and palaeobiogeographic significance of Tertiary nummulitids (Foraminifera) from northern Oman. In: Simmons MD (ed) Micropalaeontology and hydrocarbon exploration in the Middle East. Chapman and Hall, London, pp 343-367.
Racey, A., Bailey, H. W., Beckett, D., Gallagher, L. T., Hamfton, M. J. & Mcquilken, J. (2001). The petroleum geology of the Early Eocene El Garia Formation in the Hasdrubal Field, Offshore Tunisia. Journ. Petrol. Geol., 24(1), 29-53.
Rasser M. W, Scheibner C, & Mutti M. (2005). A paleoenvironmental standard section for Lower Ilerdian tropical carbonate factories (Pyrenees, Spain; Corbieres, France). Facies 51:217-232.
Scheibner, C., Speijer, R. P. (2008). Late Paleocene-early Eocene Tethyan carbonate platform evolution-a response to long- and short-term paleoclimatic change. Earth Sci Rev 90:71-102.
Schmidt, D. N., Renaud, S., & Bollman, J. (2003). Response of planktic foraminiferal size to late Quaternary climate change. Paleoceanography 18 (2), 1039. doi:10.1029/2002PA000831.
 

<

Share this article