Morphological features of the jejunum and ileum of the middle and heavy goose breeds

Abstract

M. M. Kushch, L. L. Kushch, E. V. Byrka, V. V. Byrka, O. S. Yaremchuk

We studied the morphological features of the jejunum and ileum in middle and heavy goose breeds. The geese under six month of age of Gorkovskaya and Legart breeds were used in our research. Geese of a heavy breed had a large intestinal mass, length of the jejunum and ileum, thickness of the mucous membrane of the ileum, and a smaller thickness of the muscular tunic of the jejunum. Legart geese had greater villi density and crypt depth in the jejunum and greater height and density of the villi, the width of the crypts, and the ratio of the height of the villi to the depth of the crypts in the ileum. In all the guts of heavier geese, the density of crypts was lower. The geese of the heavy breed had larger number and area of the ganglia of the mental plexus and smaller number and area in the submucosa in the jejunum, while they had larger area of the ganglia of the submucosal plexus in the ileum. The number of argyrophilic and argentaffin apudocytes in the jejunum of geese of different breeds did not differ, when the Legart breed geese had lesser quantity of apudocytes in the ileum.
Key words: Geese; Intestines; Breed; Morphological marker; Gorkovskaya; Legart
References
Ali, H.A., McLelland, J. (1978). Avian enteric nerve plexuses. A histochemical study. Cell and Tissue Research, 189(3), 537–548. doi:10.1007/bf00209139
Alshamy, Z., Richardson, K.C., Hünigen, H., Hafez, H.M., Plendl, J., Al Masri, S. (2018). Comparison of the gastrointestinal tract of a dual-purpose to a broiler chicken line: A qualitative and quantitative macroscopic and microscopic study. PLoS ONE, 13(10), e0204921. doi: 10.1371/journal.pone.0204921
Avtandilov, G.G. (1990). Meditsinskaya morfometriya. Moscow: Meditsina. (in Russian).
de Verdal, H., Mignon-Grasteau, S., Bastianelli, D., Même, N., Le Bihan-Duval, E., Narcy, A. (2013). Reducing the environmental impact of poultry breeding by genetic selection. Journal of Animal Science, 91(2), 613–622. doi:10.2527/jas.2012-5572
de Verdal, H., Mignon-Grasteau, S., Jeulin, С., Le Bihan-Duval, E., Leconte, M., Mallet, S., Martin, C., Narcy, A. (2010). Digestive tract measurements and histological adaptation in broiler lines divergently selected for digestive efficiency. Poultry Science, 89, 1955–1961. doi: 10.3382/ps.2010-813
de Verdal, H., Narcy, A., Bastianelli, D., Chapuis, H., Même, N., Urvoix, S., Le Bihan-Duval, E., Mignon-Grasteau, S. (2011). Improving the efficiency of feed utilization in poultry by selection. 1. Genetic parameters of anatomy of the gastro-intestinal tract and digestive efficiency. BMC Genetics, 12:59. doi:10.1186/1471-2156-12-59
Ernst, L.K., Dmitriev, N.G., Paronyan, I.A. (1994). Geneticheskie resursyi selskohozyaystvennyih zhivotnyih v Rossii i sopredelnyih stranah. Saint-Petersburg: Vserossiyskiy nauchno-issledovatelskiy institut genetiki i razvedeniya selskohozyaystvennyih zhivotnyih. (in Russian).
Garcia, V., Gomez, J., Mignon-Grasteau, S., Sellier, N., Carre, B. (2007). Effects of xylanase and antibiotic supplementations on the nutritional utilization of a wheat diet in growing chicks from genetic D+ and D− lines selected for divergent digestion efficiency. Animal, 1(10), 1435–1442. doi:10.1017/S1751731107000821
Iji, P.A., Saki, A., Tivey, D.R. (2001). Body and intestinal growth of broiler chicks on a commercial starter diet. 1. Intestinal weight and mucosal development. British Poultry Science, 42, 505–513. doi:10.1080/00071660120073151
Khaleel, I.M., Atiea, G.D. (2017). Morphological and histochemical study of small intestine in indigenous ducks (Anas platyrhynchos). IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS), 10(7), 19–27. doi: 10.9790/2380-1007021927
Khvostyk, V. (2008). Husy-husy. Propozytsiia, 7(157), 126–128. (in Ukrainian).
Kuder, T., Nowak, E., Szczurkowski, A., Kuchinka, J. (2003). The comparative analysis of the myenteric plexus in pigeon and hen. Anatomia, Histologia, Embryologia, 32(1), 1–5. doi:10.1046/j.1439-0264.2003.00380.x
Lee J., Karnuah A.B., Rekaya R., Anthony N.B., Aggrey S.E. (2015). Transcriptomic analysis to elucidate the molecular mechanisms that underlie feed efficiency in meat-type chickens. Molecular Genetics and Genomics, 290(5), 1673–1682. doi:10.1007/s00438-015-1025-7
Leinonen, I., Kyriazakis, I. (2016). How can we improve the environmental sustainability of poultry production? Proceedings of the Nutrition Society, 75(3), 265–273. doi:10.1017/S0029665116000094
Liu, E.H., Oberg, K. (2010). The history and development of the gastroenteropancreatic endocrine axis. Endocrinol Metab Clin North Am., 39(4), 697–711. doi: 10.1016/j.ecl.2010.09.002
Maev, I.V., Samsonov, A.A. (2005). Bolezni dvenadtsatiperstnoy kishki. Moscow: MEDpress-inform. (in Russian).
Maneewan, B., Yamauchi, K. (2004). Effects of semi-purified pellet diet on the chicken intestinal villus histology. British Poultry Science, 45(2), 163–170. doi:10.1080/00071660410001715759
Marchini, C.F., Silva, P.L. Nascimento, M.R., Beletti, M.E., Silva, N.M., Guimarães, E.C. (2011). Body weight, intestinal morphometry and cell proliferation of broiler chickens submitted to cyclic heat stress. International Journal of Poultry Science, 10, 455–460. doi: 10.3923/ijps.2011.455.460
Mawe, G.M., Hoffman, J.M. (2013). Serotonin signaling in the gut–functions, dysfunctions and therapeutic targets. Nature Rev Gastroenterology Hepatology, 10(8), 473–486. doi:10.1038/nrgastro.2013.105
Metzler-Zebeli, B.U., Magowan, E., Hollmann, M., Ball, M.E.E., Molnár, A., Witter, K., Ertl, R., Hawken, R.J., Lawlor, P.G., O'Connell, N.E., Aschenbach, J., Zebeli, Q. (2018). Differences in intestinal size, structure, and function contributing to feed efficiency in broiler chickens reared at geographically distant locations. Poultry Science, 97(2), 578–591. doi: 10.3382/ps/pex332
Mignon-Grasteau, S., Muley, N., Bastianelli, D., Gomez, J., Peron, A., Sellier, N., Millet, N., Besnard, J., Hallouis, M., Carre, B. (2004). Heritability of digestibility and divergent selection for digestion ability in growing chicks fed a wheat diet. Poultry Science, 83, 860–867. doi:10.1093/ps/83.6.860
Mitchell, M.A., Smith, M.W. (1991). The effects of genetic selection for increased growth rate on mucosal and muscle weights in the different regions of the small intestine of the domestic fowl (Gallus domesticus). Comparative Biochemistry and Physiology, 99, 251–258. doi:10.1016/0300-9629(91)90268-h
Osama, N.W., Kadhim, Kh.K. (2014). Histomorphological comparison of proventriculus and small intestine of heavy and light line pre- and at hatching. International Journal of Animal and Veterinary Advances, 6(1), 40–47. Doi: https://doi.org/10.19026/ijava.6.5615
Rehfeld, J.F. (2012). Beginnings: a reflection on the history of gastrointestinal endocrinology. Regulatory Peptides, 10(177), 1–5. doi: 10.1016/j.regpep.2012.05.087
Riabokon, Yu. O., Mykytiuk, D. M., Frolov, V. V., Katerynych, O.O., Bondarenko, Yu.V., Mosiakina, T.V., Hadiuchko, O.T., Kovalenko, H.T., Bohatyr, V.P., Liutyi, Yu.S. (2005). Kataloh pleminnykh resursiv silskohospodarskoi ptytsi Ukrainy. Kharkiv. (in Ukrainian).
Rougiere, N., Malbert, C.-H., Rideau, N., Cognie, J., Carre, B. (2012). Comparison of gizzard activity between chickens from genetic D+ and D− lines selected for divergent digestion efficiency. Poultry Science, 91, 460–467. doi: 10.3382/ps.2011-01494
Sarkisov, D.S., Perov, Yu.L. (1996). Mikroskopicheskaya tehnika. Moscow: Meditsina (in Russian).
Schaefer, C.M., Corsiglia, C.M., Mireles, A., Koutsos, E.A. (2006). Turkey breeder hen age affects growth and systemic and intestinal inflammatory responses in female poults examined at different ages post-hatch. Poultry Science, 85, 1755–1763. doi:10.1093/ps/85.10.1755
Sell-Kubiak, E., Wimmers, K., Reyer, H., Szwaczkowski, T. (2017). Genetic aspects of feed efficiency and reduction of environmental footprint in broilers: a review. Journal of Applied Genetics, 58(4), 487–498. doi: 10.1007/s13353-017-0392-7
Singh, I.A. (1964). A modification of the Masson–Hamperl method for staining of argentaffin cells. Anatomischer Anzeiger, 115(1), 81–82.
Sjolund, K., Sanden, G., Hakanson, R., Sundler, F. (1983). Endocrine cells in human intestine: an immunocytochemical study. Gastroenterology, 85, 1120–1130.
Sklan, D. (2001). Development of the digestive tract of poultry. World Poultry Science, 57, 415–428. doi: https://doi.org/10.1079/WPS20010030
Taklimi, S.M., Ghahri, H., Isakan, M.A. (2012). Influence of different levels of humic acid and esterified glucomannan on growth performance and intestinal morphology of broiler chickens. Agricultural Sciences, 3(5), 663–668. http://dx.doi.org/10.4236/as.2012.35080
Wang, F., Knutson, K., Alcaino, C., Linden, D.R., Gibbons, S.J., Kashyap, P., Grover, M., Oeckler, R., Gottlieb, P.A., Li, H.J., Leiter, A.B., Farrugia, G., Beyder, A. (2017). Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces. The Journal of Physiology, 595(1), 79–91. doi: 10.1113/JP272718
Yamauchi, K., Tarachai, P. (2000). Changes in intestinal villi, cell area and intracellular autophagic vacuoles related to intestinal function in chickens. British Poultry Science, 41, 416–423. doi:10.1080/00071660050194902
Yang, P., Gandahi, J.A., Zhang, Q., Zhang, L.L., Bian, X.G., Wu, L., Liu, Y., Chen, Q.S. (2013). Quantitative changes of nitrergic neurons during postnatal development of chicken myenteric plexus. Journal of Zhejiang University-Science B, 14(10), 886–895. doi: 10.1631/jzus.B1300005.

Share this article