Osmotic adjustment in spring durum wheat pollen grains under induced drought stress

Abstract

L.P. Khlebova, O.V. Bychkova, A.M. Titova, M.A. Rozova, A.I. Ziborov

Osmotic adjustment (OA) is recognized as one of the main mechanisms of drought tolerance in crops. OA is realized by reducing the osmotic potential due to accumulation of organic and inorganic osmolytes in response to a water deficit. This mechanism is manifested in all plant cells, including pollen grains. We carried out pollen analysis to differentiate the genotypes of spring durum wheat in tolerance to drought. Eight wheat assessments of different ecological and geographical origin from the collection of the Altai Research Institute of Agriculture, Russia were studied. They were Omskaya stepnaya, Zhemchuzhina Sibiri, Bezenchukskaya 210, Solnechnaya 573, Oazis, Pamyati Yanchenko, 12S1-14, and 12S2-24. Plants were grown at the field plots in 2016. Drought was simulated by adding 55% PEG 6000 to the culture medium. Pollen samples were incubated in the dark at 24 ± 1 °C during 48 hours at 70-80% relative humidity. To assess the efficiency of cation accumulation due to transmembrane migration from the external environment, 10 mM KCL as the osmolyte was added to the pollen culture medium containing 55% PEG 6000. Plasmolytic phenomena were assessed under a microscope by changing the cytoplasm area by scanning the surface of each pollen grain. Quantitative measurements of the projected area of pollen cytoplasm were carried out. We have established significant differences among varieties of spring durum wheat relative to OA mechanisms responsible for dehydration avoidance. The response of pollen grains to in vitro induced osmotic stress reflected various strategies for the behavior of genotypes involving or not transporting K+ cations from the cultivation medium. Most of the accessions tested are capable of supporting the cellular turgor, using only intrinsic adjustment mechanism, or combining it with osmolyte induced OA. One line has been shown to exhibit the induced osmotic adaptation, which caused some restoration of the projected cytoplasm area. One line did not resist osmotic stress, reducing the pollen turgor both under stress and in the presence of osmolyte. We succeeded in revealing a good correspondence between the pollen reactions under induced in vitro osmotic stress and the field drought tolerance index of genotypes. This made it possible to test the diversity of the accessions for tolerance to drought by scanning the pollen surface. Assessment of the behavior of the male gametophyte population of wheat under conditions of induced stress allows screening and determining drought-tolerant genotypes.

Keywords: Drought; osmotic adjustment; pollen grain; durum wheat; field drought tolerance index

References:
Ahmed, A. A. S., Uptmoor, R., El-Morshidy, M. A., Kheiralla, K. A., Ali, M. A., & Naheif, E. M. M. (2014). Some physiological parameters as screening tools for drought tolerance in bread wheat lines (Triticum aestivum L.). World Journal of Agricultural Research, 2 (3), 109-114. doi: 10.12691/wjar-2-3-4
Anjum, S. A., Ashraf, U., Tanveer, M., Khan, I., Hussain, S., Shahzad, B., Zohaib, A., Abbas, F., Saleem, M. F., Ali, I., & Wang, L. C. (2017). Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Frontiers of Plant Science, 8, 69. doi: 10.3389/fpls.2017.00069
Ashraf, M., & Foolad, M. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216. DOI: 10.1016/j.envexpbot.2005.12.006
Babu, R. C., Pathan, M. S, Blum, A., & Nguyen, H. T. (1999). Comparison of measurement methods of osmotic adjustment in rice cultivars. Crop Sciences, 39, 150-158.
Bacelar, E. V. A., Moutinho-Pereira, J. M., Gonçalves, B. M. C., Brito, C. V. Q., Gomes-Laranjo, J., Ferreira, H. M. F., & Correia, C. M. (2012). Water use strategies of plants under drought conditions. In: Aroca, R. (ed). Plant responses to drought stress. Berlin Heidelberg: Springer, 145-170. doi:10.1007/978-3-642-32653-0_6
Bănică, C., Petcu, E., Giura, A., & Săulescu, N. N. (2008). Relationship between genetic differences in the capacity of osmotic adjustment and other physiological measures of drought resistance in winter wheat (Triticum aestivum L.). Romanian Agricultural Research, 25, 7-11.
Beyaz, R., Kaya, G., Cocu, S., & Sancak, C. (2011). Response of seeds and pollen of Onobrychis viciifolia and Onobrychis oxyodonta var. armena to NaCl stress. Scientia Agricola, 68(4), 477-481. https://dx.doi.org/10.1590/S0103-90162011000400013
Bi, H., Kovalchuk, N., Langridge, P., Tricker, P. J., Lopato, S., Borisjuk, N. (2017). The impact of drought on wheat leaf cuticle properties. BMC Plant Biology, 17(1), 85. DOI 10.1186/s12870-017-1033-3
Blum, A. (2011). Plant breeding for water-limited environments. Springer, New York. DOI 10.1007/978-1-4419-7491-4_3
Blum, A. (2017). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant, Cell and Environment, 40, 4-10.
Blum, A., & Jordan, W. R. (1985). Breeding crop varieties for stress environments. Crit. Rev. Plant Sci., 2, 199-238.
Blum, A., Zhang, J., & Nguyen, H. T. (1999). Consistent differences among wheat cultivars in osmotic adjustment and their relationship to plant production. Field Crops Research,, 64(3), 287-291.
Boopathi, N. M. (2013). Genetic mapping and marker assisted selection: Basics, practice and benefits. New Deli: Springer.
Chimenti, C. A., Marcantonio, M., Hall, A. J. (2006). Divergent selection for osmotic adjustment results in improved drought tolerance in maize (Zea mays L.) in both early growth and flowering phases. Field Crops Research, 95, 305-315.
Chimenti, C. A., Pearson, J., Hall, A. J. (2002). Osmotic adjustment and yield maintenance under drought in sunflower. Field Crop Research, 75, 235-246.
Clarke, H. J., Khan, T. N., Siddique, K. H. M. (2004). Pollen selection for chilling tolerance at hybridisation leads to improved chickpea cultivars. Euphytica, 139, 65-74.
David, M. (2009). Osmotic adjustment capacity and cuticular transpiration in several wheat cultivars cultivated in Algeria. Romanian Agricultural Research, 26, 29-33.
David, M. (2012). Pollen grain expression of intrisic and osmolyte induced osmotic adjustment in a set of wheat cultivars. Romanian agricultural Research, 29, 45-52.
De Micco, V., & Aronne, G. (2012). Morpho-anatomical traits for plant adaptation to drought. In: Aroca R. (ed). Plant responses to drought stress. Berlin Heidelberg: Springer, 37-61. DOI 10.1007/978-3-642-32653-0_2
Eivazi, A., Talat, F., Saeed, A., & Ranji, H. (2007). Selection for osmoregulation gene to improve grain yield of wheat genotypes under osmotic stresses. Pakistan Journal of Biological Sciences, 10, 3703-3707. DOI: 10.3923/pjbs.2007.3703.3707
Farooq, M., Bramley, H., Palta, J. A., & Siddique, K. H. M. (2011). Heat stress in wheat during reproductive and grain-filling phases. Crit. Rev. Plant Science, 30, 491-507.
Fleta-Soriano, E., & Munné-Bosch, S. (2016). Stress memory and the inevitable effects of drought: A physiological perspective. Frontiers in Plant Science, 7, 143. doi: 10.3389/fpls.2016.00143
Ciucă, M., Bănică, C., David, M., & Săulescu N. N. (2010). SSR markers associated with the capacity for osmotic adjustment in wheat (Triticum aestivum L.). Romanian Agricultural Research, 27, 1-5.
Gonzalez, A., Martin, I., & Ayerbe, L. (1999). Barley yield in water-stress conditions. The influence of precocity, osmotic adjustment and stomatal conductance. Field Crops Research, 62, 23-34.
González, A., Martín I., & Ayerbe, L. (2008). Yield and osmotic adjustment capacity of barley under terminal water-stress conditions. J. Agronomy & Crop Science, 194, 2, 81-91.
Gursoy, M., Balkan, A., & Ulukan, H. (2012). Ecophysiological responses to stresses in plants: A general approach. Pakistan Journal of Biological Sciences, 15, 506-516.
Honys, D., & Twell, D. (2004). Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biology, 5(11), R85. DOI: 10.1186/gb-2004-5-11-r85
Hormaza, J. I., & Herrero, M. (1996). Male gametophytic selection as a plant breeding tool. Sci. Hortic., 65, 321–333. doi: 10.1007/BF00226682
IPCC, 2007: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K., Reisinger, A. (eds)]. IPCC, Geneva, Switzerland.
Jarzyniak, K. M., & Jasinski, M. (2014). Membrane transporters and drought resistance-a complex issue. Frontiers in Plant Science, 5, 687. doi:10.3389/fpls.2014.00687
Javadi, T., Arzani, K., & Ebrahimzadeh, H. (2008). Study of proline, soluble sugar, and chlorophyll a and b changes in nine Asian and one European pear cultivar under drought stress. Acta Hortic, 769, 241-246.
Karpets, Yu. V., Kolupaev, Yu. E., Grigorenko, D. O., & Firsova, K. M. (2016). Response of barley plants of various genotypes to soil drought and influence of nitric oxide donor. The bulletin of Kharkiv national agrarian university. Series: biology, 2(38), 94-105.
Leport, L., Turner, N. C., French, R. J., Barr, M. D., Duda, R., Davies, S. L., Siddique, K. H. M. (1999). Physiological responses of chickpea genotypes to terminal drought in a Mediterranean-type environment. European Journal of Agronomy, 11, 279-291.
Marcińska, I., Czyczyło, M. I., Skrzypek, E., Filek, M., Grzesiak, S., Grzesiak, M.T., Janowiak, F., Hura, T., Dziurka, M., Dziurka, K., Nowakowska, A., & Quarrie, S. A. (2013). Impact of osmotic stress on physiological and biochemical characteristics in drought susceptible and drought resistant wheat genotypes. Acta Physiol Plant, 35, 451-461. DOI 10.1007/s11738-012-1088-6
Mascarenhas, J. P. (1990). Gene activity during pollen development. Annu. Rev. Plant Physiol. Plant Mol. Biol., 41, 317-338. doi: 10.1146/annurev.pp.41.060190.001533
Fischer, R. A., Sayre, K. D., & Reynolds, M. P. (2005). Osmotic adjustment in wheat in relation to grain yield under water deficit environments. Agronomy Journal, 97(4), 1062-1071.
Moinuddin, K. C. R., Khanna-Chopra, R. (2004). Osmotic adjustment in chickpea in relation to seed yield and yield parameters. Crop Sciences, 44, 449-455.
Morgan, J. M. (1992). Osmotic components and properties associated with genotypic differences in osmoregulation in wheat. Australian Journal of Plant Physiology, 19, 67-76.
Morgan, J. M. (1999). Pollen grain expression of a gene controlling differences in osmoregulation in wheat leaves: a simple breeding method. Australian Journal of Agricultural Research, 50, 953-962.
Morgan, J. M., & Tan, M. K. (1996). Chromosomal location of a wheat osmoregulation gene using RFLP analysis. Australian Journal of Plant Physiology, 23, 803-806.
Munns, R. (1988). Why measure osmotic adjustment? Australian Journal of Plant Physiology, 15, 717-726.
Nezhadahmadi, A., Prodhan, Z. H., & Faruq, G. (2013). Drought tolerance in wheat. The Scientific World Journal, 2013, Article ID 610721. http://dx.doi.org/10.1155/2013/610721
Obata, T., Witt, S., Lisec, J., Palacios-Rojas, N., Florez-Sarasa, I., Yousfi, S., Araus, J. L., Cairns, J. E., & Fernie, A. R. (2015). Metabolite profiles of maize leaves in drought, heat, and combined stress field trials reveal the relationship between metabolism and grain yield. Plant Physiology, 169(4), 2665-2683. http://doi.org/10.1104/pp.15.01164
Passioura, J. (2007). The drought environment: physical, biological and agricultural perspectives. Journal of Experimental Botany, 58(2), 113-117. DOI: https://doi.org/10.1093/jxb/erl212
Patil, B. S., & Ravikumar, R. L. (2011). Osmotic adjustment in pollen grains: a measure of drought adaptation in sorghum? Current science, 100, 3, 377-382.
Patil, B. S., Ravikumar, R. L., Salimath, P. M. (2006). Effect of pollen selection for moisture stress tolerance on progeny performance in Sorghum. Journal of Food, Agriculture and Environment, 4, 201-204.
Pawar, V. V., Lokhande, P. K., Dalvi, U. S., Awari, V. R., Kale, A. A., & Chimote,V. P. (2015). Effect of osmotic stress on osmolyte accumulation and ammonia assimilating enzymes in chickpea cultivars. Indian Journal of Plant Physiology, 20, 276-280. doi: 10.1007/s40502-015-0159-2
Pedersen, S., Simonsen, V., & Loeschcke, V. (1987). Overlap of gametophytic gene expression in barley. Theoretical and Applied Genetics, 75(1), 200-206. DOI: 10.1007/BF00249164
Rani, T. S., & Ravikumar, R. L. (2006). Sporophytic and gametophytic recurrent selection for improvement of partial resistance to Alternaria leaf blight in sunflower (Helianthus annuus L.). Euphytica, 147, 421-431.
Ramakrishna, A., & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior, 6(11), 1720-1731. http://doi.org/10.4161/psb.6.11.17613
Ravikumar, R. L., Patil, B. S., Soregaon, C. D., & Hegde, S. G. (2007). Genetic evidence for gametophytic selection of wilt resistant alleles in chickpea. Theor Appl Genet, 114, 619-625. doi:10.1007/s00122-006-0462-4
Reynolds, M. P., Quilligan, E., & Aggarwal, P. K. (2016). An integrated approach to maintaining cereal productivity under climate change. Global Food Security, 8, 9-18. http://dx.doi.org/10.1016/j.gfs.2016.02.002
Richards, R. A. (2006). Physiological traits used in breeding of new cultivars for water-scarce environments. Agricultural Water Management, 80, 197-211.
Richards, R. A., Rebetzke, G. J., Watt, M., Condon, A. G., Spielmeyer, W., & Dolferus, R. (2010). Breeding for improved water productivity in temperate cereals: phenotyping, quantitative trait loci, markers and the selection environment. Funct. Plant Biology, 37, 85-97. doi:10.1071/FP09219
Rozova, M. A., & Ziborov, A. I. (2016). The productivity of spring durum wheat collection accessions under diverse weather conditions in the Priobskaya (the Ob River) forest-steppe of the Altai Region. Bulletin of Altai State Agricultural University, 5(139), 9-15.
Rybka, K., & Nita, Z. (2015). Physiological requirements for wheat ideotypes in response to drought threat. Acta Physiol Plant, 37, 97. DOI 10.1007/s11738-015-1844-5
Sanders, G., & Arndt, S. (2012). Osmotic adjustment under drought conditions. In: Aroca R. (ed). Plant responses to drought stress. Berlin Heidelberg: Springer, 199-229. doi:10.1007/978-3-642-32653-0_8
Santamaria, J. M., Ludlow, M. M., & Fukai, S. (1990). Contribution of osmotic adjustment to grain yield in Sorghum bicolor (L.) under water-limited conditions. I. Water stress before anthesis. Australian Journal of Plant Physiology, 41, 51-65.
Sari-Gorla, M., Frova, C., Binelli, G., & Ottaviano E. (1986). The extent of gametophytic-sporophytic gene expression in maize. Theoret Appl Genetics, 72(1), 42-47. doi:10.1007/BF00261452
Serraj, R., & Sinclair, T. R. (2002). Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant, Cell and Environment, 25, 333-341.
Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., & Savouré, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot, 115(3), 433-447. doi.org/10.1093/aob/mcu239
Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytol, 203, 32-43. doi:10.1111/nph.12797
Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science, 327(5967), 818-822. http://dx.doi.org/10.1126/ science.1183700
Totsky, I. V., Lyakh, V. A. (2015). Pollen selection for drought tolerance in sunflower. Helia, 38(63), 211-220. DOI: 10.1515/helia-2015-0012
Turner, N. C. (2017). Turgor maintenance by osmotic adjustment, an adaptive mechanism for coping with plant water deficits. Plant, Cell and Environment, 40, 1-3. doi: 10.1111/pce.12839
Zhang, J., Nguyen, H. T., & Blum A. (1999). Genetic analysis of osmotic adjustment in crop plants. Journal of Experimental Botany, 50(332), 291-302.
Zivcak, M., Brestic, M., & Sytar, O. (2016). Osmotic adjustment and plant adaptation to drought stress. Chapter 5. In: Hossain, M. A. (ed). Drought Stress Tolerance in Plants. Switzerland: Springer International Publishing, 1, 105-144. DOI 10.1007/978-3-319-28899-4_5

<

Share this article