Phenotypic regulation of animal skeletal muscle protein metabolism


K.T. Erimbetov, O.V. Obvintseva A.V. Fedorova, R.A. Zemlyanoy, A.G. Solovieva

This review highlights the current state of phenotypic mechanisms of regulation of muscle protein metabolism in animals. Since the skeletal muscle represents 40–50% of body mass in mammals it is a critical regulator of overall metabolism. Therefore, an understanding of the processes involved in the postnatal increase in muscle mass, with associated accumulation of protein, is fundamental. Throughout life, a delicate balance exists between protein synthesis and degradation that is essential for growth and normal health of humans and animals. Signaling pathways coordinate muscle protein balance. Anabolic and catabolic stimuli are integrated through the PKB/Akt-mTORC1 signaling to regulate mechanisms that control muscle protein synthesis and breakdown. At an early periods of intensive growth, muscle mass is stimulated by an increase in protein synthesis at the level of mRNA translation. Throughout the life, proteolytic processes including autophagy lysosomal system, ubiquitin proteasome pathway, calcium-dependent calpains and cysteine protease caspase enzyme cascade influence the growth of muscle mass. Several signal transmission networks direct and coordinate these processes along with quality control mechanisms to maintain protein homeostasis (proteostasis). Genetic factors, hormones, amino acids, phytoecdysteroids, and rhodanines affect the protein metabolism via signaling pathways, changing the ability and / or efficiency of muscle growth.
Keywords: autophagy; proteasomes; muscle protein metabolism; proteomics; metabolomics; phytoecdysteroids; amino acids; rhodanine derivative
Anthony, T.G., Mirek, E.T., Bargoud, A.R., Phillipson-Weiner, L., DeOliveira, C.M., Wetstein B., Graf B.L., Kuhn P.E., Raskin I. (2015). Evaluating the effect of 20-hydroxyecdysone (20HE) on mechanistic target of rapamycin complex 1 (mTORC1) signaling in the skeletal muscle and liver of rats. Appl Physiol Nutr Metabol, 40, 1324–1328.
Anthony, J.C., Anthony, T.G., Kimball, S.R., Jefferson, L.S. (2001). Signaling pathways involved in translational control of protein synthesis in skeletal muscle by leucine. J Nutr, 131, 856–860.
Anthony, T.G. (2016). Mechanisms of protein balance in skeletal muscle. Domest Anim Endocrinol, 56(Suppl), 23–32. doi: 10.1016/j.domaniend.2016.02.012.
Arnal, M.A., Mosoni, L., Dardevet, D., Ribeyre, M.C., Bayle, G. et al. (2002). Pulse protein feeding pattern restores stimulation of muscle protein synthesis during the feeding period in old rats. J Nutr, 132, 1002–1008.
Bach, M., Larance, M., James, D.E., Ramm, G. (2011). The serine/threonine kinase ULK1 is a target of multiple phosphorylation events. Biochem J, 440, 283-291. doi: 10.1042/BJ20101894.
Banerjee A., Guttridge D.C. (2012). Mechanisms for maintaining muscle. Curr Opin Support Palliat Care, 6, 451-456. 10.1097/SPC.0b013e328359b681.
Bassett A. (2009). Welfare and belgian blue cattle. Animal Welfare Approved Technical Advice Fact Sheet, Animal Welfare Approved,1–8.
Boggess M.V., Lippolis J.D., Hurkman W.J., Fagerquist C.K., Briggs S.P., Gomes A.V., Righetti P.G., Bala K. (2013). The need for agriculture phenotyping: “Moving from genotype to phenotype”. J Proteomics, 93, 20–39.
Bonaldo P, Sandri M. (2013) Cellular and molecular mechanisms of muscle atrophy. Dis Models Mech, 6, 25–39.
Braun T.P, Marks D.L. (2015). The regulation of muscle mass by endogenous glucocorticoids. Front Physiol, 6, 12.
Cecconi F, Levine B. (2008). The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell, 15, 344-357. 10.1016/j.devcel.2008.08.012.
Clemmons D.R. (2009). Role of IGF-I in skeletal muscle mass maintenance. Trends Endocrinol Metab, 20, 349-356. 10.1016/j.tem.2009.04.002.
Clugston G.A., Garlick P.J. (1982). The response of protein and energy metabolism to food intake in lean and obese man. Hum Nutr Clin Nutr, 36, 57-70.
Columbus D.A., Fiorotto M.L., Davis T.A. (2015). Leucine is a major regulator of muscle protein synthesis in neonates. Amino Acids, 47, 259–270.
Columbus D.A., Steinhoff-Wagner J., Suryawan A., Nguyen H.V., Hernandez-Garcia A., Fiorotto M.L., Davis T.A. (2015). Impact of prolonged leucine supplementation on protein synthesis and lean growth in neonatal pigs. Am J Physiol Endocrinol Metabol, 309, E601–610.
Combaret L., Taillandier D., Attaix D. (2001). Nutritional and hormonal control of protein breakdown. Am J Kidney Dis, 37, 108-111.
Davis T.A., Fiorotto M.L., Suryawan A. (2015). Bolus vs. Continuous feeding to optimize anabolism in neonates. Curr Opin Clin Nutr Metabol Care, 18, 102–108.
Davis T.A., Suryawan A., Orellana R.A., Fiorotto M.L., Burrin D.G. (2010). Amino acids and insulin are regulators of muscle protein synthesis in neonatal pigs. Animal, 4, 1790-1796. 10.1017/S1751731110000984.
Davis T.A., Suryawan A., Orellana R.A., Nguyen H.V., Fiorotto M.L. (2008). Postnatal ontogeny of skeletal muscle protein synthesis in pigs. J Anim Sci, 86, E13–18.
Duan Y., Li F., Li Y., Tang Y., Kong X., Feng Z., Anthony T.G., Watford M., Hou Y., Wu G., Yin Y. (2016). The role of leucine and its metabolites in protein and energy metabolism. Amino Acids, 48, 41–51.
Erimbetov K.T. Obvintseva O.V. (2011). Metabolism of nitrogenous substances and the formation of productivity in young pigs raised on low protein diets with different levels and ratios of essential amino acids. Problems of Biology of Productive Animals, 3, 64-71 (in Russian).
Erimbetov K.T., Sharieva D.I., Obvintseva O.V. (2005). Regulation of the exchange of protein and nitrogen compounds in the organism of growing animals of different species (review) Agricultural Biology, 4, 29-34 (in Russian).
Gazzaneo M.C., Suryawan A., Orellana R.A., Torrazza R.M., El-Kadi S.W., Wilson F.A., Kimball S.R., Srivastava N., Nguyen H.V., Fiorotto M.L., Davis T.A. (2011). Intermittent bolus feeding has a greater stimulatory effect on protein synthesis in skeletal muscle than continuous feeding in neonatal pigs. J Nutr, 141, 2152–2158.
Glass D.J. (2010). Pi3 kinase regulation of skeletal muscle hypertrophy and atrophy. Curr Top Microbiol Immunol, 346, 267–278.
Goodband B., Tokach M., Dritz S., Derouchey J., Woodworth J. (2014). Practical starter pig amino acid requirements in relation to immunity, gut health and growth performance. J Anim Sci Biotechnol, 5, 12.
Goodman C.A., Mayhew D.L., Hornberger T.A. (2011). Recent progress toward understanding the molecular mechanisms that regulate skeletal muscle mass. Cell Signal, 23, 1896–1906.
Gorelick-Feldman J., Cohick W., Raskin I. (2010). Ecdysteroids elicit a rapid Ca2+ flux leading to Akt activation and increased protein synthesis in skeletal muscle cells. Steroids, 75, 632–637.
Gorelick-Feldman J., Maclean D., Ilic N., Poulev A., Lila M.A., Cheng D., Raskin I. (2008). Phytoecdysteroids increase protein synthesis in skeletal muscle cells. J Agric Food Chem, 56, 3532–3537.
Jefferson L.S., Kimball S.R. (2001). Translational control of protein synthesis: Implications for understanding changes in skeletal muscle mass. Int J Sport Nutr Exer Metabol, 11(Suppl), S143–149.
Kadowaki M., Kanazawa T. (2003) Amino acids as regulators of proteolysis. J Nutr, 133, 2052S-2056S.
Kalnitsky B.D., Kalashnikov V.V. (2006). Modern approaches to the development of animal nutrition systems and the implementation of the biological potential of their productivity. Bulletin of the Russian Academy of Agricultural sciences, 2, 78-80 (in Russian).
Kimball S.R., Jefferson L.S., Nguyen H.V., Suryawan A., Bush J.A., Davis T.A. (2000). Feeding stimulates protein synthesis in muscle and liver of neonatal pigs through an mTOR-dependent process. American Journal of Physiology Endocrinology and Metabolism, 279, E1080–1087.
Kizelsztein P., Govorko D., Komarnytsky S., Evans A., Wang Z., Cefalu W.T., Raskin I. (2009). 20-hydroxyecdysone decreases weight and hyperglycemia in a diet-induced obesity mice model. Am J Physiol Endocrinol Metab, 296, E433–439.
Kratky F., Opletal L., Hejhalek J, Kucharova S. (1997) Effect of 20-hydroxyecdysone on the protein synthesis of pigs. Zivocisna Vyroba, 42, 445-451.
Kuma A., Hatano M., Matsui M., Yamamoto A., Nakaya H., Yoshimori T., Ohsumi Y., Tokuhisa T., Mizushima N. (2004) The role of autophagy during the early neonatal starvation period. Nature, 432, 1032-1036. 10.1038/nature03029.
Larbaud D., Balage M., Taillandier D., Combaret L., Grizard J., Attaix D. (2001). Differential regulation of the lysosomal, Ca 2+ - dependent and ubiquitin / proteasome-dependent proteolytic pathways in fast-twitch and slow-twitch rat muscle following hyperinsulinaemia. Clin Sci (Lond.), 101(6), 551-558.
Laufenberg L.J., Pruznak A.M., Navaratnarajah M., Lang C.H. (2014) Sepsis-induced changes in amino acid transporters and leucine signaling via mTOR in skeletal muscle. Amino Acids, 46, 2787–2798.
Layman D.K., Anthony T.G., Rasmussen B.B., Adams S.H., Lynch C.J., Brinkworth G.D., Davis T.A. (2015). Defining meal requirements for protein to optimize metabolic roles of amino acids. Am J Clin Nutr, Jun, 101(6), 1330S-1338S. doi: 10.3945/ajcn.114.084053.
Liu Y., Li F., Kong X., Tan B., Li Y., Duan Y., Blachier F., Hu C.A., Yin Y. (2015). Signaling pathways related to protein synthesis and amino acid concentration in pig skeletal muscles depend on the dietary protein level, genotype and developmental stages. PloS ONE, 10, e0138277.
Lobley G.E. (1998). Nutritional and hormonal control of muscle and peripherial tissue metabolism in farm species. Brit J Nutr, 56, 91-114.
Lobley G.E. (2003). Protein turnover – what does it mean for animal production? Can J Anim Sci, 83, 327-340.
Lorenzen C.L., Koohmaraie M., Shackelford S.D., Jahoor F., Freetly H.C., Wheeler T.L., Savell J.W., Fiorotto M.L. (2000). Protein kinetics in callipyge lambs. In J Anim Sci, 78, 78-87.
Madeira M.S., Costa P., Alfaia C.M., Lopes P.A., Bessa R.J., Lemos J.P., Prates J.A. (2013). The increased intramuscular fat promoted by dietary lysine restriction in lean but not in fatty pig genotypes improves pork sensory attributes. J Anim Sci, 91, 3177–3187.
Martinez A., Alonso M., Castro A., Dorronsoro I., Gelpí J. L., Luque F. J., Pérez C., Moreno F. J. (2005). SAR and 3D-QSAR Studies on Thiadiazolidinone Derivatives: Exploration of Structural Requirements for Glycogen Synthase Kinase 3 Inhibitors. J Med Chem, 48, 7103-7112.
Martinez A., Alonso M., Castro A., Pérez C., Moreno F. J. (2002). First Non-ATP Competitive Glycogen Synthase Kinase 3 â (GSK-3â) Inhibitors:Thiadiazolidinones (TDZD) as Potential Drugs for the Treatment of Alzheimer’s. J Med Chem, 45, 1292-1299.
Milan G., Romanello V., Pescatore F., Armani A., Paik J.H., Frasson L., Seydel A., Zhao J., Abraham R., Goldberg A.L., Blaauw B., DePinho R.A., Sandri M. (2015). Regulation of autophagy and the ubiquitin-proteasome system by the FOXO transcriptional network during muscle atrophy. Nat Commun, 6, 6670.
Millward D.J., Garlick P.J., James W.P.T., Nnanygelugo D.O., Ryatt J.S. (1973). Relationship between protein synthesis and RNA content on skeletal muscle. Nature, 241, 204-205.
Mitchell W.K., Phillips B.E., Williams J.P., Rankin D., Lund J.N., Wilkinson D.J., Smith K., Atherton P.J. (2015). The impact of delivery profile of essential amino acids upon skeletal muscle protein synthesis in older men: Clinical efficacy of pulse vs. Bolus supply. Am J Physiol Endocrinol Metabol, 309, E450–457.
Munro H.N. (1974) Regulation of protein metabolism. Acta Anaesth Scand, 55 (Suppl.), 66-73.
Neel B.A., Lin Y., Pessin J.E. (2013). Skeletal muscle autophagy: a new metabolic regulator. Trends Endocrinol Metab, 24, 635-643. 10.1016/j.tem.2013.09.004.
O’Connor P.M., Kimball S.R., Suryawan A., Bush J.A., Nguyen H.V., Jefferson L.S., Davis T.A. (2003). Regulation of translation initiation by insulin and amino acids in skeletal muscle of neonatal pigs. Am J Physiol Endocrinol Metabol, 285, E40–53.
Otten C., Berk A., Muller S., Weber M., Danicke S. (2013). Influence of dietary amino acid level on chemical body composition and performance of growing-finishing boars of two sire lines. Arch Anim Nutr, 67, 477–491.
Pasiakos S.M., Carbone J.W. (2014). Assessment of skeletal muscle proteolysis and the regulatory response to nutrition and exercise. IUBMB Life, 66, 478–484.
Pasiakos S.M., McClung J.P. (2011). Supplemental dietary leucine and the skeletal muscle anabolic response to essential amino acids. Nutr Rev, 69, 550–557.
Pasiakos S.M., McLellan T.M., Lieberman H.R. (2015). The effects of protein supplements on muscle mass, strength, and aerobic and anaerobic power in healthy adults: A systematic review. Sports Med, 45, 111–131.
Post M.J. (2012). Cultured meat from stem cells: Challenges and prospects. Meat Science, 92, 297–301.
Qiao X., Zhang H.J., Wu S.G., Yue H.Y., Zuo J.J., Feng D.Y., Qi G.H. (2013). Effect of beta-hydroxy-beta-methylbutyrate calcium on growth, blood parameters, and carcass qualities of broiler chickens. Poult Sci, 92, 753–759.
Rajawat Y.S., Hilioti Z., Bossis I. (2009). Aging: central role for autophagy and the lysosomal degradative system. Ageing Res Rev, 8, 199-213. 10.1016/j.arr.2009.05.001.
Reeds P.J., Cadenhead A., Fuller M.F., Lobley G.E., McDonald J.D. (1980). Protein turnover in growing pigs. Effects of age and food intake. Brit J Nutr 1980, 43, 445-455.
Sanchez A.M., Candau R.B., Bernardi H. (2014). Foxo transcription factors: Their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci, 71, 1657–1671.
Schakman O., Kalista S., Barbe C., Loumaye A., Thissen J.P. (2013). Glucocorticoid- induced skeletal muscle atrophy. Int J Biochem Cell Biol, 45, 2163–2172.
Schiaffino S., Mammucari C. (2011). Regulation of skeletal muscle growth by the IGF1- Akt/PKB pathway: Insights from genetic models. Skeletal muscle, 1, 4.
Seve B., Ponter A.A. (1997). Nutrient-hormone signals regulating muscle protein turnover in pigs. Proc Nutr Soc, 56, 565-580.
Sheybak V.M. (2014). Leucine, isoleucine, valine: biochemical basis for the development of new drugs: monograph. Grodno: State Medical University, 244 p (in Russian).
Suryawan, A., Davis, T.A. (2014). Regulation of protein degradation pathways by amino acids and insulin in skeletal muscle of neonatal pigs. J Animal Sci Biotechnol, 5, 5-8. doi:10.1186/2049-1891-5-8.
Swick R.W. (1982). Growth and protein turnover in animals. CRC Crit Rev Food Sci Nutr, 2, 117-126.
Wheatley S.M., El-Kadi S.W., Suryawan A., Boutry C., Orellana R.A., Nguyen H.V., Davis S.R., Davis T.A. (2014). Protein synthesis in skeletal muscle of neonatal pigs is enhanced by administration of beta-hydroxy-beta-methylbutyrate. Am J Physiol Endocrinol Metabol, 306, E91–99.
Wilson F.A., Suryawan A., Orellana R.A., Kimball S.R., Gazzaneo M.C., Nguyen H.V., Fiorotto M.L., Davis T.A. (2009). Feeding rapidly stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing translation initiation. J Nutr, 139, 1873–1880.
You J.S., Anderson G.B., Dooley M.S., Hornberger T.A. (2015). The role of mTOR signaling in the regulation of protein synthesis and muscle mass during immobilization in mice. Disease models & mechanisms, 8, 1059–1069.
Zhang S., Li X., Li L., Yan X. (2011). Autophagy up-regulation by early weaning in the liver, spleen and skeletal muscle of piglets. Br J Nutr, 106, 213-217. 10.1017/S0007114511001000.
Zuo J., Xu M., Abdullahi Y.A., Ma L., Zhang Z., Feng D. (2015). Constant heat stress reduces skeletal muscle protein deposition in broilers. J Sci Food Agric, 95, 429–436.

Share this article