Phytolith assemblages in modern top soils under plant communities of Northern and Western Altay, Russia


M. Yu. Solomonova, M. S. Blinnikov, N. Yu. Speranskaja, N. V. Elesova, M. M. Silantyeva

We investigated 120 assemblages of phytoliths from modern top soils of 40 different plant communities of Northern and Western Altay region of Russia. The samples were collected from elevations between 360 m and 2360 m above sea level. Using statistical analyses, it was discovered that many communities produce sufficiently distinct assemblages based on standard morphotypes. Specifically we studied 6 kinds of forests (larch, spruce, fir, pine, cedar pine and birch-dominated), 3 kinds of steppes (true, meadow and petrophytic), 5 kinds of meadows (steppe-like, upland dry, wet floodplain, subalpine, alpine), alpine tundra, and mountain shrubland communities. The communities were not evenly sampled, with more redundancy in some types than in others. Using PCA, it was possible to reveal the few morphotypes most responsible for distinguishing different communities, e.g., low conical rondels, rondel sum, long cell sum, lanceolate cells with massive base, and bulliform cell sum.
 Key words: Phytoliths; Modern soils; Temperate zone; Plant communities; Eurasia
An X.H. (2016). Morphological characteristics of phytoliths from representative conifers in China. Palaeoworld, 25. 116-127. DOI: 10.1016/j.palwor.2016.01.002.
Benvenuto M.L., Fernández Honaine M., Osterrieth M.L., Morel E. (2015). Differentiation of globular phytoliths in Arecaceae and other monocotyledons: morphological description for paleobotanical application. Turkish Journal of Botany, 39, 341-353. DOI: 10.3906/bot-1312-72.
Bobrov, A.A., Semenov, A.N., Alexeev, Yu.E. (2016). Phytoliths of species some genera of the family Cyperaceae. Environmental dynamics and global climate change, 7(1), 27-33 (in Russian). DOI: 10.17816/edgcc7127-33.
Blinnikov, M.S. (1994). Phytolith analysis and Holocene dynamics of alpine vegetation. In: Onipchenko, V., Blinnikov, M. (Eds.). Experimental Investigation of Alpine Plant Communities in Northwestern Caucasus. Zurich: Veroffentlichungen des Geobotanischen Institutes ETH, Stiftung Rübel, 115, 23-42.
Blinnikov, M.S. (2005). Phytoliths in plants and soils of the interior Pacific Northwest, USA. Review of Palaeobotany and Palynology, 135, 71-98. DOI: 10.1016/j.revpalbo.2005.02.006.
Gao G., Jie D., Liu L., Liu H., Li D., Li N., Shi J., Leng C., Qiao Z. (2018). Assessment and calibration of representational bias in soil phytolith assemblages in Northeast China and its implications for paleovegetation reconstruction. Quaternary Research, 90(1), 38-49.DOI: 10.1017/qua.2018.5.
Blinnikov M.S., Bagent C.M., Reyerson P.E. (2013). Phytolith assemblages and opal concentrations from modern soils differentiate temperate grasslands of controlled composition on experimental plots at Cedar Creek, Minnesota. Quaternary International, 287, 101-113.
Carnelli, A. L.,Madella,M., and Theurillats, J.-P. (2001). Biogenic silica production in selected alpine plant species and plant communities. Ann. Bot, 87, 425-434. DOI: 10.1006/anbo.2000.1355.
Fredlund, G. Tieszen, L.T. (1994). Modern phytolith assemblages from the North American Great Plains. Journal of Biogeography, 21(3), 321-335. DOI: 10.2307/2845533.
Goleva, A.A. (2001). Phytoliths and their information role in natural and archaeological objects. Moscow-Syktyvkar: Elista. Golyeva, A. (2007). Various phytolith types as bearers of different kinds of ecological information. In Madella M., Zurro Z. (Eds) Plants, People and Places: Recent Studies in Phytolith Analysis, Oxford: Oxbow Books, 196–200.
Kamanina, I.Z. (1992). Kremnezemistye biolity v pochvakh nekotorykh prirodnykh zon. (Candidate of biology thesis). Soil Science Faculty,MoscowState University, Moscow, Russia. (In Russian).
Katz O. (2014). Beyond grasses: the potential benefits of studying silicon accumulation in non-grass species. Frontiersin Plant Science, 5, 1-3. DOI: 10.3389/fpls.2014.00376.
Katz O. (2015). Silica phytoliths in angiosperms: phylogeny and early evolutionary history. New Phytologist, 208, 642-646. DOI: 10.1111/nph.13559.
Khokhlova, O., Morgunova, N., Khokhlov, A., Golyeva, A. (2019 a). Dynamics of paleoenvironments in the Cis-Ural steppes during the mid- to late holocene. Quaternary Research, 91(1), 96-110. DOI: 10.1017/qua.2018.23.
Khokhlova O.S., Dyuzhova K.V., Shipkova G.V., Golyeva A.A., Trifonova T.A., Bunin D.S., Ilyashenko S.M., Khokhlov A.A. (2019 b) Paleoecology of the ancient city of Tanais (3rd century BC–5th century AD) on the north-eastern coast of the sea of Azov (Russia). Quaternary International, 516, 98-110. DOI: 10.1016/j.quaint.2018.10.007.
Kiseleva, N.K. (2006). Phytolith analysis in paleoecological research. In: Savinetsky A.B. (ed) The Dynamics of Modern Ecosystems in the Holocene Proceedings of the Russian Scientific Conference (Yekaterinburg, 2-3 February 2006). Moskow: KMK Scientific Press Ltd. (in Russian).
Lada N., Gavrilov D. (2016). Analysis of phytolith composition of the main plant steppe ecosystems of Western Siberia. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya, 2(34), 53-68. DOI: 10.17223/19988591/34/4
Li D.-H., Jie D.-M., Liu L.-D., Liu H.-Y., Gao G.-Z., Gao Zh., Li N.-N. (2018). Herbaceous phytoliths from forest and grassland in Northeast China: Potential significance for determining past forest–grassland boundaries. Flora, 243, 19-31. DOI: 10.1016/j.flora.2018.03.012
Madella M., Alexandre A., Ball T. (2005). Internetional Code for Phytolith Nomenclature 1.0. // Annals of Botany, 96, 253-260. Neumann K., Fahmy A. G., Müller-Scheeßel N., Schmidt M. (2017). Taxonomic, ecological and palaeoecological significance of leaf phytoliths in West African grasses. Quaternary International, 434(B), 15-32. DOI: 10.1016/j.quaint.2015.11.039.
Ollendorf A.L. (1992). Towards a classification scheme of sedge (Cyperaceae) phytoliths. In: Rapp Jr.G. Mulholland S.C. (Eds).
Phytolith Systematics-Emerging Issues. New York: Plenum, 91-111. italica leaves. Archaeol. Anthropol. Sci., 8, 505-521. DOI: 10.1007/s12520-015-0235-6.
Piperno D.R. (2006). Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists. Lanham: Alta Mira Press. Shakoor Sh. A., Bhat M.A. (2014). Morphological diversity of phytolith types in some Chloridoid grasses of Punjab. International Journal of Botany and Research (IJBR), 4(1), 1-10.
Silantyeva M., Solomonova M., Speranskaja N., Blinnikov M.S. (2018). Phytoliths of temperate forest-steppe: a case study from the Altay, Russia. Review of Palaeobotany and Palynology, 250, 1-15. DOI: 10.1016/j.revpalbo.2017.12.002.
Solomonova, M.Yu., Kiryushin, K.Yu., Sitnikov, S.M. (2017). Phytoliths research of the Novoilinka and Novoilinka-1 bronze age archaeological sites (North Kulunda). Izvestiya Altajskogo gosudarstvennogo universiteta, 5(97), 218-222. (in Russia). DOI: 10.14258/izvasu(2017)5-39.
Solomonova, M.Y., Blinnikov, M.S., Silantieva, M.M., Speranskaya, N.Y. (2019). Influence of Moisture and Temperature Regimes on the Phytolith Assemblage Composition of Mountain Ecosystems of the Mid Latitudes: A Case Study From the Altay Mountains. Frontiers in Ecology and Evolution. DOI: 10.3389/fevo.2019.00002.
Speranskaya, N.Yu., Solomonova,M.Yu., Silantyeva,M.M., Genrih, Yu.V., Blinnikov M.S. (2018). Cereal phytoliths of Northern Altay. Ukr. J. Ecol. 8, 762-771. DOI: 10.15421/2018_278
Strömberg C.A.E. (2011). Evolution of grasses and grassland ecosystems. Annual Review of Earth and Planetary Sciences, 3, 517- 544. DOI: 10.1146/annurev-earth-040809-152402.
Tsartsidou G., Lev-Yadun S., Albert R.-M., Miller-Rosen A., Efstratiou N., Weiner S. (2007). The phytolith archaeological record: strengths and weaknesses evaluated based on a quantitative modern reference collection from Greece. Journal of Archaeological Science, 34, 1262-1275.
Wallis L. (2003). An overview of leaf phytolith production patterns in selected northwest Australian flora. Review of Palaeobotany and Palynology, 125, 201-248.

Share this article