Radon in the spring water of the Zdolbuniv Region, Ukraine
Abstract
O.O. Lebed, V.O. Myslinchuk, S.S. Trusheva, Y.M. Mandyhra, A.V. Lysytsya
Large-scale studies of Radon-222 content in spring waters and the specific activity of spring soil determined in Zdolbuniv district of Rivne region for the first time. The purpose of the research is to determine the potential radiation hazard for the health of the population of the region. Another task is to create a detailed map of radon content in water sources. We measured in 2014-2017. We used the «Alfarad Plus» (water study) and the «Beta» radiometer (soil study). The value of radon volumetric activity in water samples varies in a wide range: from 2 Bq/dm3 to 14 Bq/dm3, the average value is 8.05 ± 0.91 Bq/dm3. We surveyed 58 water sources. The concentration of radon exceeded the norm (according to recommendations of US Environmental Protection Agency, USEPA) in 13 (22.4%) only. This is a radon concentration of slightly higher than 11.1 Bq/dm3, which is the limit value for the safety of radon content in non-drinking water. We compared average concentrations of radon in samples of water in the Zdolbuniv district with the capacity of effective doses in other countries. We examined the soil near the sources; the soil was low-activity for strontium-90 and cesium-137. Its specific activity is from 6 to 30 Bq/kg. The correlation of the soil specific activity with the bulk activity of radon in water detected. The results of the survey of drinking water sources allowed to divide them into radon content into three categories and to create a map of radon safety of natural sources of the region. Sources with a high concentration of radon are concentrated in a narrow strip 5-7 km wide. This strip extends from the south to the north of the area. Such, the concentration of sources with somewhat increased radioactivity of water explained, in our opinion, by the vertical fault that exists in the crystalline basement of the landscape. Radon enters through this fault in surface water sources. The calculations conducted by us have shown that the average annual effective doses of spring water used for consumption by the population are 1.68 mSv/year about. This does not exceed the lower limit specified by the recommendations of the International Commission on Radiation Protection (ICRP). Therefore, we proved that radon in the spring water of the Zdolbuniv district is practically not a threat to the health and life of people and domestic animals in the area.
Keywords: Radioactive gas in water; volumetric activity; effective dose
References:
Abdallah, S.M., Habib, R.R., Nuwayhid, R.Y., Chatila, M., Katul, G. (2007). Radon measurements in well and spring water in Lebanon. Radiation Measurements, 42(2), 298-303. doi: 10.1016/j.radmeas.2006.11.004
Ademola, J. A., Oyeleke, О.А. (2017). Radon-222 in groundwater and effective dose due to ingestion and inhalation in the city of Ibadan, Nigeria. Journal of Radiological Protection, 37(1), 189-200. doi: 10.1088/1361-6498/37/1/189
Ali, N., Khan, E. U., Akhter, P., Khan, F., Waheed, A. (2010) Estimation of mean annual effective dose through radon concentration in the water and indoor air of Islamabad and Murree. Radiation Protection Dosimetry, 141(2):183-191. doi:10.1093/rpd/ncq160
Amiri, V., Nakhaei, M., Lak, R. (2017). Using radon-222 and radium-226 isotopes to deduce the functioning of a coastal aquifer adjacent to a hypersaline lake in NW Iran. Journal of Asian Earth Sciences, 147, 128-147. doi: 10.1016/j.jseaes.2017.07.015
Andreev, A. I., Kokovkin, A. A., Medvedeva, M. D. (2011). Radon kak indikator sejsmogeodinamicheskoj aktivnosti [Radon as an indicator of seismogeodynamic activity]. Safety in the Technosphere, 5, 8-13 (in Russian). https://elibrary.ru/item.asp?id=17032218
Baranov, V., Ogil', V., Sokolova, A., Burkser, E. (1930). Instrukcija k izmereniju radioaktivnosti mineral'nyh istochnikov [Instructions for Measuring the Radioactivity of Mineral Sources]. Moscow (in Russian).
Baykara, O., Dogru, M. (2006). Measurements of radon and uranium concentration in water and soil samples from East Anatolian Active Fault Systems (Turkey). Radiation Measurements, 41(3), 362-367. doi: 10.1016/j.radmeas.2005.06.016
Bekman, I. N. (2008). Radon: vrag, vrach i pomoshhnik. Kurs lekcij [Radon: enemy, doctor and assistant. Lecture course]. Medicine, Moscow (in Russian).
Chen, J. (2013). Canadian lung cancer relative risk from radon exposure for short periods in childhood compared to a lifetime. International journal of environmental research and public health, 10, 1916–1926. doi: 10.3390/ijerph10051916
Cosma, C., Moldovan, M., Dicu, T., Kovacs, T. (2008). Radon in water from Transylvania (Romania). Radiation Measurements, 43(8), 1423-1428. doi: 10.1016/j.radmeas.2008.05.001
D'Alessandro, W., Vita, F. (2003). Groundwater radon measurements in the Mt. Etna area. Journal of Evironmental Radioactivity, 65(2), 187-201. doi: 10.1016/S0265-931X(02)00096-6
Dogan, M., Ganioglu, E., Sahin, L., Hafizoglu, N. (2018). Investigation of radon concentrations in some reservoirs, spring and tap waters in A degrees Іstanbul, Turkey. Journal of Radioanalytical and Nuclear Chemistry, 315(3), 653-660. doi: 10.1007/s10967-018-5713-8
Gerenchuk, K. I., Kojnov, M. M., Cys', P. M. (1964). Pryrodno-geografichnyj podil L'vivs'kogo ta Podil's'kogo ekonomichnyh rajoniv [Natural-geographical division of Lviv and Podilsky economic districts]. Publishing House of Lviv University, Lviv (in Ukrainian).
Gudzenko, V. V., Golikova, T. O., Gudzenko, G. I., Shevchenko, O. L. (2004). Radon v pidzemnyh vodah mista Kyjeva [Radon in the underground waters of the Kiev]. Bulletin of the Kiev University; Geology, 29-30, 101-104 (in Ukrainian). http://www.geolvisnyk.univ.kiev.ua/archive/N29-30_2004/index.php
Karpets, Yu. M. (2013). Rol' tektoniky ta geologichnoi' budovy u fizyko-geografichnomu podili Volyns'koi' vysochyny [The role of tectonics and geological structure in the physical and geographical separation of Volyn Upland] (in Ukrainian). http://geopolitika.crimea.edu/arhiv/2013/tom9-v-1/010karp.pdf
Khan, A. J. (1994). Estimation of dose rate for indoor radon from building materials. Radiation and Environmental Biophysics, 33(1), 81–84. doi: 10.1007/BF01255276
Kritz, M. A., Le Roulley, J., Danielsen, E. F. (1990). China Cipper – Fast advective transport of radon – rich air from the Asian boundary layer to the upper troposphere near California. Tellus, Series B, 1(42), 46–61. https://doi.org/10.1034/j.1600-0889.1990.00007.x
Levyn, M. N. (2007). Radon. Uchebnoe posobye [Radon. Tutorial]. Yzdatel'sko-polygrafycheskyj centr VGU, Voronezh (in Russian).
Mäkeläinen, I., Arvela, H., Voutilainen, A. (2001). Correlations between radon concentration and indoor gamma dose rate, soil permeability and dwelling substructure and ventilation. Science of The Total Environment, 272(1–3), 283–289. https://doi.org/10.1016/S0048-9697(01)00705-7
Mustapha, A. O., Patel, J. P., Rathore, I. V. S. (2002). Preliminary report on radon concentration in drinking water and indoor air in Kenya. Environmental Geochemistry and Health, 24(4), 387–396. https://link.springer.com/article/10.1023%2FA%3A1020550103471
Outkin, V. I. (2000). Radonovaja problema v jekologii [Radon`s problem in ecology]. Soros Educational Journal, 3, 73-80 (in Russian). https://gtpradonkirovohradfeb2012.pbworks.com/w/file/fetch/51844934/Уткин%20статья%20Радон.PDF
Peterson, E., Aker, A., Kim, J. H., Li, Y., Brand, K., Copes, R. (2013). Lung cancer risk from radon in Ontario, Canada: how many lung cancers can we prevent? Cancer Causes Control, 24 (11), 2013-2020. doi: 10.1007/s10552-013-0278-x
Sahin, L., Cetinkaya, H., Sac, M., Ichedef, M. (2013). Determination of radon and radium concentrations in drinking water samples around the city of Kutahya. Radiation Protection Dosimetry, 155(4), 474-482. doi: 10.1093/rpd/nct019
Singh, J., Singh, H., Singh, S., Bajwa, B. S. (2010). Measurement of soil gas radon and its correlation with indoor radon around some areas of upper Siwaliks, India. Journal of Radiological Protection, 30(1), 63–71. doi: 10.1088/0952-4746/30/1/005
S'omka, V. O., Ponomarenko, O. M., Bondarenko, S. M., Dons'kyj, M. O., S'omka, L. V. (2013). Geologo-strukturni umovy lokalizacii' molibdeno- i vol'framonosnyh metasomatytiv Ukrai'ns'kogo shhyta [Geological and structural conditions of localization of molybdenum- and tungsten-bearing metasomatites of the Ukrainian shield]. Transactions of UkrNDMI NAN Ukraine, 13 (part II), 350-375 (in Ukrainian). http://dspace.nbuv.gov.ua/bitstream/handle/123456789/57260/23-Syomka.pdf?sequence=1
Telahigue, F., Agoubi, B., Souid, F., Kharroubi, A. (2018). Groundwater chemistry and radon-222 distribution in Jerba Island, Tunisia. Journal of Environmental Radioactivity, 182, 74-84. doi: 10.1016/j.jenvrad.2017.11.025
Tregub, N. V., Shumakova, E. M. (2015). Metodicheskie aspekty monitoringa koncentracii radona v prizemnom sloe v svjazi s projavleniem geodinamicheskoj aktivnosti na territorii Samarskoj oblasti [Methodological aspects of monitoring the radon concentration in the surface layer in connection with the manifestation of geodynamic activity in the territory of the Samara Region]. Science and Education in the Modern World, 4(4), 26-32 in Russian). https://elibrary.ru/contents.asp?issueid=1524681
Truta, L. A., Hofmann, W., Cosma, C. (2014). Lung cancer risk due to residential radon exposures: estimation and prevention. Radiation Protection Dosimetry, 160, 112-116. doi: 10.1093/rpd/ncu062
Tyhonov, M. N. (2009). Radon: istochniki, dozy i nereshennye voprosy [Radon: Sources, Doses and Unresolved Issues]. Sanitary doctor, 12, 34-42 (in Russian).
UNSCEAR. (2000). United Nations Scientific Committee on the effects of atomic radiations. The General Assembly with Scientific Annex (New York, United Nations). http://www.unscear.org/unscear/en/publications/2000_1.html
USEPA. (1991). National primary drinking water regulations; radionuclides; proposed rules. Federal Regist. 56(138), 33050. https://www.federalregister.gov/documents/2000/12/07/00-30421/national-primary-drinking-water-regulations-radionuclides-final-rule
Vinson, D. S., Campbell, T. R., Vengosh, A. (2008). Radon transfer from groundwater used in showers to indoor air. Applied Geochemistry, 23(9), 2676-2685. doi: 10.1016/j.apgeochem.2008.05.021
Wrixon, A. D. (2008). Review, new ICRP recommendations. J. Radio. Protec, 28, 161–168. https://pdfs.semanticscholar.org/fbc0/91ce761c3dde2e830b4e2b6e90a2e936c9fb.pdf
Yigitoglu, I., Oner, F., Yalim, H. A., Akkurt, A., Okur, A., Ozkan, A. (2010). Radon concentrations in water in the region of Tokat city in Turkey. Radiation Protection Dosimetry, 142(2-4), 358-362. doi: 10.1093/rpd/ncq1
Zaleskyi, І. І. (2014). Radonovi vody Rivnenshhyny [Radon water of Rivne region]. Bulletin of National University of Water and Environmental Engineering, series "Agricultural Sciences", 65(1), 88-93 (in Ukrainian). http://ep3.nuwm.edu.ua/1322/1/Vs6511.pdf
Zelensky, A. V., Buzinny, M. G., Los, I. P. (1993). Radon-222 in water: concentrations, doses, standards. Problems of Radiation Medicine, 5, 71–83 (in Russian).