Selection of technological regime and cryoprotector for lyophilization of lactobacteria (Lactobacillus spp.)


A.P. Paliy, S.O. Gujvinska, M.S. Alrawashdeh, O.I. Shkromada, Yu.A. Dudchenko, L.M. Kovalenko, L.V. Plyuta, L.O. Franchuk-Kryva, L.L. Kushch, O.V. Matsenko

Despite the success achieved in the comprehensive study of probiotic cultures, today there are a number of problems associated with the low viability of lactic acid bacteria during their processing and long-term storage in probiotics. Our work aimed to select the optimal technological regime and cryoprotectant to preserve the viability of lactic acid bacteria Lactobacillus spp. during their lyophilization. According to the results of the conducted researches, it is established that for freeze-drying of probiotic cultures Lactobacillus spp. in the facility LZ-45.27 (Frigera, Czech Republic) the most optimal is the mode which provides a rise of temperature within 45 hours from minus 70.0±1.0 °C to plus 26.0±1.0 °C with a speed of 2.2±0.1 °C/hour. It is effective to use protective media for lactobacilli, which consist of: skim milk (90%) and sucrose (10%); skim milk (90%) and lactose (10%); skim milk (90%), glucose (2.5%), sucrose (2.5%), lactose (5.0%) (P≤0.05). Freeze-drying of lactic acid bacteria under optimal conditions and the addition of cryoprotectants will avoid the problems associated with a significant reduction in the number of microbial cells. The results of research can be used for long-term storage of cultures of lactobacilli by their lyophilization.

Keywords ?? lactobacilli, temperature, cryoprotectants, freezing, freeze-drying



Anal, ?. K., & Singh, H. (2007). Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Technology, 18(5), 240-251. doi: 10.1016/j.tifs.2007.01.004

Anisimova, E., & Yarullina, D. (2018). Characterization of Erythromycin and Tetracycline Resistance in Lactobacillus fermentum Strains. International Journal of Microbiology, 2018, ID 3912326. doi: 10.1155/2018/3912326

Bergenholtz, Å. S., Wessman, P., Wuttke, A., & Håkansson, S. (2012). A case study on stress preconditioning of a Lactobacillus strain prior to freeze-drying. Cryobiology, 64(3), 152-159. doi: 10.1016/j.cryobiol.2012.01.002

Berner, D., & Viernstein, H. (2006). Effect of protective agents on the viability of Lactococcus lactis subjected to freeze???thawing and freeze???drying. Scientia Pharmaceutica, 74(3), 137-149. doi: 10.3797/scipharm.2006.74.137

Bolla, P. A., Serradell, M. L., de Urraza, P. J., & de Antoni, G. L. (2011). Effect of freeze-drying on viability and in vitro probiotic properties of a mixture of lactic acid bacteria and yeasts isolated from kefir. The Journal of dairy research, 78(1), 15-22. doi: 10.1017/S0022029910000610

Boricha, A. A., Shekh, S. L., Pithva, S. P., Ambalam, P. S., & Vyas, B. R. M. (2019) In vitro evaluation of probiotic properties of Lactobacillus species of food and human origin. LWT – Food Science and Technology, 106, 201-208. doi: 10.1016/j.lwt.2019.02.021

Brizuela, M. A., Serrano, P., & Pérez, Y. (2001). Studies on Probiotics Properties of Two Lactobacillus Strains. Brazilian Archives of Biology and Technology, 44(1), 95-99. doi: 10.1590/S1516-89132001000100013

Burgain, J., Gaiani, C., Linder, M., & Scher, J. (2011) Encapsulation of probiotic living cells: from laboratory scale to industrial applications. Journal of Food Engineering, 104(4), 467-483. doi: 10.1016/j.jfoodeng.2010.12.031

Carvalho, A. S., Silva, J., Ho, P., Teixeira, P., Malcata, F. X., & Gibbs, P. (2004). Relevant factors for the preparation of freeze???dried lactic acid bacteria. International Dairy Journal, 14(10), 835-847. doi: 10.1016/j.idairyj.2004.02.001

Casarotti, S. N., Carneiro, B. M., Todorov, S. D., Nero, L. A., Rahal, P., & Penna, A. L. B. (2017). In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheese. Annals of Microbiology, 67, 289-301. doi: 10.1007/s13213-017-1258-2

Chen, H., Chen, S., Li, C., & Shu, G. (2015). Response surface optimization of lyoprotectant for Lactobacillus bulgaricus during vacuum freeze-drying. Preparative biochemistry and biotechnology, 45(5), 463-475. doi: 10.1080/10826068.2014.923451

Coman, M. M., Verdenelli, M. C., Cecchini, C., Silvi, S., Orpianesi, C., Boyko, N., & Cresci, A. (2014). In vitro evaluation of antimicrobial activity of Lactobacillus rhamnosus IMC 501®, Lactobacillus paracasei IMC 502® and SYNBIO® against pathogens. Journal of Applied Microbiology, 17, 518-527. doi: 10.1111/jam.12544

Dekker, J., Collett, M., Prasad, J., & Gopal, P. (2007). Functionality of probiotics - potential for product development. Forum of nutrition, 60, 196-208. doi: 10.1159/000107196

de Man, J., Rogosa, M., & Sharpe, M. (1960). A medium for the cultivation of Lactobacilli. Journal of Applied Bacteriology, 23(1), 130-135. doi: 10.1111/j.1365-2672.1960.tb00188.x

Desai, A. R., Powell, I. B., & Shah, N. P. (2006). Survival and Activity of Probiotic Lactobacilli in Skim Milk Containing Prebiotics. Journal of Food Science, 69(3), 57-60. doi: 10.1111/j.1365-2621.2004.tb13371.x

de Vos, P., Faas, M. M., Spasojevic, M., & Sikkema, J. (2010) Encapsulation for preservation of functionality and targeted delivery of bioactive food components. International Dairy Journal, 20(4), 292-302. doi: 10.1016/j.idairyj.2009.11.008

Di Cerbo, A., Palmieri, B., Aponte, M., Morales-Medina, J. C., & Iannitti, T. (2016). Mechanisms and therapeutic effectiveness of lactobacilli. Journal of clinical pathology, 69(3), 187-203. doi: 10.1136/jclinpath-2015-202976

Duar, R. M., Lin, X. B., Zheng, J., Martino, M. E., Grenier, T., Pérez-Muñoz, M. E., Leulier, F., Gänzle, M., & Walter, J. (2017). Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiology Reviews, 41(Supp_1), 27-48. doi: 10.1093/femsre/fux030

Elliott, G. D., Wang, S., & Fuller, B. J. (2017). Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology, 76, 74-91. doi: 10.1016/j.cryobiol.2017.04.004

García-Ruiz, A., González de Llano, D., Esteban-Fernández, A., Requena, T., Bartolomé, B., & Moreno-Arribas, M. V. (2014). Assessment of probiotic properties in lactic acid bacteria isolated from wine. Food microbiology, 44, 220-225. doi: 10.1016/

Gehrke, H. H., Pralle, K., & Deckwer, W. D. (1992). Freeze drying of microorganisms ??? influence of cooling rate on survival. Food Biotechnology, 6(1), 35-49. doi: 10.1080/08905439209549820

Gujvinska, S. O., & Paliy, A. P. (2018). Determination of antagonistic and adhesive properties of Lactobacterium and Bifidobacterium. Mikrobiolohichnyi Zhurnal, 80(1), 36-44. doi: 10.15407/microbiolj80.01.036

Gujvinska, S. O., Paliy, A. P., Dunaeva, O. V., Paliy, A. P., & Berezhna, N. V. (2018). Biotechnology production of medium for cultivation and lyophilization of lactic acid bacteria. Ukrainian Journal of Ecology, 8(2), 5-11. doi: 10.15421/2018_302

Hadzevych, O. V., Paliy, A. P., Kinash, O. V., Petrov, R. V., & Paliy, A. P. (2019). Antibiotic resistance of microorganisms isolated from milk. World of Medicine and Biology, 3(69), 245-250. doi: 10.26724/2079-8334-2019-3-69-245-250

Hill, D., Sugrue, I., Tobin, C., Hill, C., Stanton, C., & Ross, R. P. (2018). The Lactobacillus casei Group: History and Health Related Applications. Frontiers in Microbiology, 9, 2107. doi: 10.3389/fmicb.2018.02107

Huang, L., Lu, Z., Yuan, Y., Lü, F., & Bie, X. (2006). Optimization of a protective medium for enhancing the viability of freeze-dried Lactobacillus delbrueckii subsp. bulgaricus based on response surface methodology. Journal of industrial microbiology and biotechnology, 33(1), 55-61. doi: 10.1007/s10295-005-0041-8

Jankovic, I., Sybesma, W., Phothirath, P., Ananta, E., & Mercenier, A. (2010) Application of probiotics in food products – challenges and new approaches. Current Opinion in Biotechnology, 21(2), 175-181. doi: 10.1016/j.copbio.2010.03.009

Jiang, M., Zhang, F., Wan, C., Xiong, Y., Shah, N. P., Wei, H., & Tao, X. (2016). Evaluation of probiotic properties of Lactobacillus plantarum WLPL04 isolated from human breast milk. Journal of Dairy Science, 99(3), 1736-1746. doi: 10.3168/jds.2015-10434

Jofré, A., Aymerich, T., & Garriga, M. (2015). Impact of Different Cryoprotectants on the Survival of Freeze-Dried Lactobacillus Rhamnosus and Lactobacillus Casei/Paracasei During Long-Term Storage. Beneficial microbes, 6(3), 381-386. doi: 10.3920/BM2014.0038

Juárez Tomás, M. S., Bru, E., Martos, G., & Nader-Macías, M. E. (2009). Stability of freeze-dried vaginal Lactobacillus strains in the presence of different lyoprotectors. Canadian journal of microbiology, 55(5), 544-552. doi: 10.1139/w08-159

Kang, M. H., Saraswat, V., Lee, J., & Park, Y.-H. (1999). Production of lyophilized culture of Lactobacillus acidophilus with preserving cell viability. Biotechnology and Bioprocess Engineering, 4, 36-40. doi: 10.1007/BF02931911

Karami, S., Roayaei, M., Hamzavi, H., Bahmani, M., Hassanzad-Azar, H., Leila, M., & Rafieian-Kopaei, M. (2017). Isolation and identification of probiotic Lactobacillus from local dairy and evaluating their antagonistic effect on pathogens. International journal of pharmaceutical investigation, 7(3), 137-141. doi: 10.4103/jphi.JPHI_8_17

Kasianenko, O. I., Kasianenko, S. M., Paliy, A. P., Petrov, R. V., Kambur, M. D., Zamaziy, A. A., Livoshchenko, L. P., Livoshchenko, Ye. M., Nazarenko, S. M., Klishchova, Zh. E., & Palii, A. P. (2020). Application of mannan oligosaccaharides (Alltech Inc.) in waterfowl: optimal dose and effectiveness. Ukrainian Journal of Ecology, 10(3), 63-68. doi: 10.15421/2020_134

Kolling, Y., Salva, S., Villena, J., & Alvarez, S. (2018). Are the immunomodulatory properties of Lactobacillus rhamnosus CRL1505 peptidoglycan common for all Lactobacilli during respiratory infection in malnourished mice? PLoS One, 13(3), e0194034. doi: 10.1371/journal.pone.0194034

Li, B., Tian, F., Liu, X., Zhao, J., Zhang, H., & Chen, W. (2011). Effects of cryoprotectants on viability of Lactobacillus reuteri CICC6226. Applied microbiology and biotechnology, 92(3), 609-616. doi: 10.1007/s00253-011-3269-4

Liévin-Le Moal, V., & Servin, A. L. (2014). Anti-infective activities of lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clinical microbiology reviews, 27(2), 167-199. doi: 10.1128/CMR.00080-13

Li, H., & Cao, Y. (2010). Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids, 39(5), 1107-1116. doi: 10.1007/s00726-010-0582-7

Lukic, J., Vukotic, G., Stanisavljevic, N., Kosanovic, D., Molnar, Z., Begovic, J., Terzic-Vidojevic, A., Jeney, G., & Ljubobratovic, U. (2019). Solid state treatment with Lactobacillus paracasei subsp. paracasei BGHN14 and Lactobacillus rhamnosus BGT10 improves nutrient bioavailability in granular fish feed. PLoS One, 14(7), e0219558. doi: 10.1371/journal.pone.0219558

Meng, X. C., Stanton, C., Fitzgerald, G. F., Daly, C., & Ross, R. P. (2008). Anhydrobiotics: the challenges of drying probiotic cultures. Food Chemistry, 106(4), 1406-1416. doi: 10.1016/j.foodchem.2007.04.076

Montel Mendoza, G., Pasteris, S. E., Otero, M. C., & Fatima Nader-Macías, M. E. (2014). Survival and beneficial properties of lactic acid bacteria from raniculture subjected to freeze-drying and storage. Journal of Applied Microbiology, 116(1), 157-166. doi: 10.1111/jam.12359

Nazarenko, S. M., Paliy, A. P., Berezovskiy, A. V., Fotin, A. I., Fotin, O. V., Petrov, R. V., ???sianenko, ??. ??., Lazorenko, L. N., Negreba, J. V., Palii, A. P., & Rebenko, H. I. (2020). Improving the sanitary condition of pond bed by forage grass cultivation. Ukrainian Journal of Ecology, 10(2), 368-374. doi: 10.15421/2020_111

Otero, M. C., Espeche, M. C., & Nader???Macías, M. E. (2007). Optimization of the freeze-drying media and survival throughout storage of freeze-dried Lactobacillus gasseri and Lactobacillus delbrueckii subsp. delbrueckii for veterinarian probiotic applications. Process Biochemistry, 42(10), 1406-1411. doi: 10.1016/j.procbio.2007.07.008

Paliy, A. P., Gujvinska, S. A., Rodionova, K. O., Alekseeva, N. V., Ponomarenko, O. V., Alrawashdeh, M. S., Yeletskaya, T. A., Ponomarenko, G. V., Kushnir, V. Yu., & Palii, A. P. (2020a). Enhanced cultivation technology for lacto- and bifidobacteria. Ukrainian Journal of Ecology, 10(3), 83-87. doi: 10.15421/2020_137

Paliy, A. P., Gujvinska, S. O., Livoshchenko, L. P., Nalivayko, L. I., Livoshchenko, Ye. M., Risovaniy, V. I., Dubin, R. A., Berezhna, N. V., Palii, A. P., & Petrov, R. V (2020b). Specific composition of indigenous microflora (Lactobacillus spp., Bifidobacterium spp., Lactococcus spp.) in farm animals. Ukrainian Journal of Ecology, 10(1), 43-48. doi: 10.15421/2020_7

Paliy, A. P., Sumakova, N. V., Paliy, A .P., & Ishchenko, K. V. (2018). Biological control of house fly. Ukrainian Journal of Ecology, 8(2), 230-234. doi:10.15421/2018_332

Paliy, A. P., Zavgorodniy, A. I., Stegniy, B. T., & Palii, A. P. (2020). Scientific and methodological grounds for controlling the development and use of disinfectants. Monograph. Kharkiv: «Miskdruk», 318. ISBN: 978-617-619-237-4. (in Ukrainian)

Pithva, S., Shekh, S., Dave, J., & Vyas, B. R. M. (2014) Probiotic attributes of autochthonous Lactobacillus rhamnosus strains of human origin. Applied Biochemistry and Biotechnology, 173(1), 259-277. doi: 10.1007/s12010-014-0839-9

Prabhurajeshwar, C., & Chandrakanth, K. (2019). Evaluation of antimicrobial properties and their substances against pathogenic bacteria in-vitro by probiotic Lactobacilli strains isolated from commercial yoghurt. Clinical Nutrition Experimental, 23, 97-115. doi: 10.1016/j.yclnex.2018.10.001

Prabhurajeshwar, C., & Chandrakanth, R. K. (2017). Probiotic potential of Lactobacilli with antagonistic activity against pathogenic strains: An in vitro validation for the production of inhibitory substances. Biomedical journal, 40(5), 270-283. doi: 10.1016/

Prema, P., Smila, D., Palavesam, A., & Immanuel, G. (2010). Production and Characterization of an Antifungal Compound (3-Phenyllactic Acid) Produced by Lactobacillus plantarum Strain. Food and Bioprocess Technology, 3, 379-386. doi: 10.1007/s11947-008-0127-1

Rodionova, K. ??., Paliy, A. P., Palii, A. P., Yatsenko, ??. V., Fotina, T. I., Bogatko, N. M., Mohutova, V. F., Nalyvayko, L. I., Ivleva, O. V., & Odyntsova, T. A. (2020). Effect of ultraviolet irradiation on beef carcass yield. Ukrainian Journal of Ecology, 10(2), 410-415. doi: 10.15421/2020_118

Schoug, A., Olsson, J., Carlfors, J., Schnürer, J., & Håkansson, S. (2006). Freeze-drying of Lactobacillus coryniformis Si3--effects of sucrose concentration, cell density, and freezing rate on cell survival and thermophysical properties. Cryobiology, 53(1), 119-127. doi: 10.1016/j.cryobiol.2006.04.003

Shakhova, Yu. Yu., Paliy, A. P., Paliy, A. P., Shigimaga, V. O., Kis, V. M., & Ivanov, V. I. (2020). Use of Multicomponent Cryoprotective Media During Cryopreservation of Murine Embryos by Vitri?cation. Problems of Cryobiology and Cryomedicine, 30(2), 203-206. doi: 10.15407/cryo30.02.203

Shekh, S. L., Boricha, A. A., Chavda, J. G., & Vyas, B. R. M. (2020). Probiotic potential of lyophilized Lactobacillus plantarum GP. Annals of Microbiology, 70, 16. doi: 10.1186/s13213-020-01556-x

Shekh, S. L., Dave, J. M., & Vyas, B. R. M. (2016) Characterization of Lactobacillus plantarum strains for functionality, safety and γ-amino butyric acid production. LWT – Food Science and Technology, 74, 234-241. doi: 10.1016/j.lwt.2016.07.052

Shkromada, O., Skliar, O., Paliy, A., Ulko, L., Gerun, I., Naumenko, ??., Ishchenko, K., Kysterna, O., Musiienko, O., & Paliy, A. (2019). Development of measures to improve milk quality and safety during production. Eastern-European Journal of enterprise technologies, 3/11(99), 30-39. doi: 10.15587/1729-4061.2019.168762

Sukmarini, L., Mustopa, A. Z., Normawati, M., & Muzdalifah, I. (2014). Identification of Antibiotic-Resistance Genes from Lactic Acid Bacteria in Indonesian Fermented Foods. HAYATI Journal of Biosciences, 21(3), 144-150. doi: 10.4308/hjb.21.3.144

Talib, N., Mohamad, N. E., Yeap, S. K., Hussin, Y., Aziz, M., Masarudin, M. J., Sharifuddin, S. A., Hui, Y. W., Ho, C. L., & Alitheen, N. B. (2019). Isolation and Characterization of Lactobacillus spp. from Kefir Samples in Malaysia. Molecules, 24(14), 2606. doi: 10.3390/molecules24142606

Tan, D. T., Poh, P. E., & Chin, S. K. (2018). Microorganism preservation by convective air-drying – A review. Drying Technology, 36(7), 764-779. doi: 10.1080/07373937.2017.1354876

Tseng, ?-P., & Montville, T. J. (1993). Metabolic Regulation of End Product Distribution in Lactobacilli: Causes and Consequences. Biotechnology progress, 9(2), 113-121. doi: 10.1021/bp00020a001

Turuvekere Sadguruprasad, L., & Basavaraj, M. (2018). Statistical modelling for optimized lyophilization of Lactobacillus acidophilus strains for improved viability and stability using response surface methodology. AMB Express, 8(1), 129. doi: 10.1186/s13568-018-0659-3

Ukhovskyi, V. V., Paliy, A. P., Tarasov, O. A., Ukhovska, T. ??., & Paliy, A. P. (2019). Using of Glycerol and DMSO for Leptospira interrogans Cryopreservation. Problems of Cryobiology and Cryomedicine, 29(1), 102-106. doi: 10.15407/cryo29.01.102

Wells, J. M. (2011). Immunomodulatory mechanisms of lactobacilli. Microbial cell factories, 10 Suppl 1(Suppl 1), 17. doi: 10.1186/1475-2859-10-S1-S17

Yadav, R., Puniya, A. K., & Shukla, P. (2016). Probiotic Properties of Lactobacillus plantarum RYPR1 from an Indigenous Fermented Beverage Raabadi. Frontiers in Microbiology, 7:1683. doi: 10.3389/fmicb.2016.01683

Zárate, G., & Nader-Macias, M. E. (2006) Viability and biological properties of probiotic vaginal lactobacilli after lyophilization and refrigerated storage into gelatin capsules. Process Biochemistry, 41(8), 1779-1785. doi: 10.1016/j.procbio.2006.03.024

Zavgorodniy, A. I., Stegniy, B. T., Paliy, A. P., Gorjeev, V. M., & Smirnov, A. M. (2013). Scientific and practical aspects of disinfection in veterinary medicine. Kharkiv: FOP Brovin O.V., 222. ISBN 978-966-2445-59-6. (in Ukrainian)

Zhao, G., & Zhang, G. (2005). Effect of protective agents, freezing temperature, rehydration media on viability of malolactic bacteria subjected to freeze-drying. Journal of applied microbiology, 99(2), 333-338. doi: 10.1111/j.1365-2672.2005.02587.x

Share this article