Soil variability of denudation landforms on eluvium and diluvium of Devonian red rocks (Lake Belyo basin, Republic of Khakassia, Russia)


E.Yu. Konstantinova, A.O. Konstantinov, A.A. Novoselov

Lithological heterogeneity and dissected relief are the main factors that determine trends of soil development and diversity of soil cover within cuesta ridges and slopes of the Lake Belyo basin (Republic of Khakassia, Russia). Hyperskeletic Mollic Leptosols on eluvium of bedrock are predominant within the eluvial landscape position of local watersheds and upper parts of slopes. These soils have a shortened profile and an incomplete set of genetic horizons. Leptic Petrocalcic Chernozems (Endosalic) form on eluvial-deluvial rocks in the eluvial-accumulative positions of local depressions whereas Calcic Chernozems (Endosalic) occupy the transeluvial-accumulative positions of gently sloping lower part of the macroslope of the lacustrine basin. Less developed soils (Leptosols) have a reddish color, small thickness of humus horizons with rather high content of organic matter and high alkalinity of the entire profile with a close bedding of dense calciferous rocks. Chernozems differ by the nature of underlain sediments. Slight sulfate-chloride and sulfate salinization of the profile, which does not hinder the development of vegetation, is typical for these soils. Relatively small thickness of humus profile is characteristic for the studied Chernozems. Humus accumulation in the upper part of the profile turns into sharp decrease in the content of organic carbon with the depth. The presence of soils with different degrees of development on corresponding surfaces reflects certain stage of denudation alignment of elevated forms of relief. Leptosols and Chernozems are different parts of single evolutionary series of soils in a context of continuous translational process of physical weathering within the macroslope of the lacustrine basin. Although Leptosols gradually change to Chernozems at the mesolevel of the entire macroslope, there are areas within the aerials of Chernozems where less developed soils form on fine-grained sediments, which complicates the structure of the soil cover of the whole territory.

Keywords: Steppe; red-colored deposits; cuestas; Chernozems; Leptosols

Amundson R., Heimsath, A., Owen, J., Yoo, K., & Dietrich, W. E. (2015). Hillslope soils and vegetation. Geomorphology, 234, 122-132. doi: 10.1016/j.geomorph.2014.12.031.
Aparin, B. F., Novokreshenih, T. A., & Sukhacheva, E. Yu. (2010). Soil cover of lake Bele hollow, Hakassiya republic. Vestnik of Saint Petersburg University. Biology, 3, 110-124 (in Russian).
Bazilevich N. I., & Pankova E. I. (1968). Opyt klassifikatsii pochv po zasoleniyu (Experience in the classification of soils by salinity). Pochvovedenie, 11, 3-16.
Evans, D. M., & Hartemink, A. E. (2014). Terra Rossa catenas in Wisconsin, USA. Catena, 123, 148-152. doi: 10.1016/j.catena.2014.07.007.
González-Alcaraz, M. N., Jiménez-Cárceles, F. J., Álvarez, Y., & Álvarez-Rogel, J. (2014). Gradients of soil salinity and moisture, and plant distribution, in a Mediterranean semiarid saline watershed: a model of soil–plant relationships for contributing to the management. Catena, 115, 150-158. doi: 10.1016/j.catena.2013.11.011.
Hattar, B. I., Taimeh, A. Y., & Ziadat, F. M. (2010). Variation in soil chemical properties along toposequences in an arid region of the Levant. Catena, 83(1), 34-45. doi: 10.1016/j.catena.2010.07.002.
Karchegani, P. M., Ayoubi, S., Mosaddeghi, M. R., & Honarjoo, N. (2012). Soil organic carbon pools in particle-size fractions as affected by slope gradient and land use change in hilly regions, western Iran. Journal of Mountain Science, 9(1), 87-95. doi: 10.1007/s11629-012-2211-2.
Konstantinova, E. Yu. (2016). Profil'noe raspredelenie legkorastvorimykh soley v teksturno-karbonatnykh chernozemakh stepnoy kotloviny ozera Belyo (Khakasiya) [Depthwise distribution of ready soluble salts in chernozems calcic of the steppe basin of Lake Belyo (Khakassia)]. In V. A. Boev, A. I. Syso & V. Yu. Khoroshavin (Eds.), Biogeochemistry of chemical elements and compounds in natural media: materials of the II International School-Seminar for Young Researchers, dedicated to the memory of Professor VB. Ilyin (pp. 250-254). Tyumen: Tyumen State University Publishing House.
Kulizhskii, S. P., Rodikova, A. V., & Shamshaeva, V. F. (2009). Lake Shira: Microzonality of the soil cover of lake depressions in the Shira steppe. Contemporary Problems of Ecology, 2(2), 103-108. doi: 10.1134/S1995425509020027.
Kulizhskii, S. P., Rodikova, A. V., & Shamshaeva, V. F. (2012). Content and distribution of chemical elements in soils of lake depressions in Shira Steppe of Chulym-Yenisei basin. Contemporary Problems of Ecology, 5(5), 522-528. doi: 10.1134/S1995425512050058.
Kulizhskiy, S. P., & Rodikova A. V. (2009). Geochemical differentiation of soils of the hollow of lake Shira. Tomsk State University Journal of Biology, 3(7), 103-108 (in Russian).
Kutiel, P., Lavee, H., & Ackermann, O. (1998). Spatial distribution of soil surface coverage on north and south facing hillslopes along a Mediterranean to extreme arid climatic gradient. Geomorphology, 23(2–4), 245-256. doi: 10.1016/S0169-555X(98)00007-5.
Läßiger, M., Scheithauer, J. & Grunewald, K. J. (2008). Preliminary mapping and characterisation of soils in the Pirin Mountains (Bulgaria). Journal of Mountain Science, 5(2), 122-129. doi: 10.1007/s11629-008-0133-9.
Lesovaya, S. N., Aparin, B. F., Kapichka, A., & Petrovskii E. (2003). Pedogenic and lithogenic features in the mineralogical composition of chernozem developed from red-earth deposits. Eurasian Soil Science, 36(12), 1325-1333.
Lucke, B., Kemnitz, H., Bäumler, R., & Schmidt M. (2014) Red Mediterranean Soils in Jordan: New insights in their origin, genesis, and role as environmental archives. Catena, 112, 4-24. doi: 10.1016/j.catena.2013.04.006.
Lybrand, R. A., & Rasmussen, C. (2015). Quantifying climate and landscape position controls on soil development in semiarid ecosystems. Soil Science Society of America Journal, 79(1), 104-116. doi: 10.2136/sssaj2014.06.0242.
Mahmoodi, M., Khormali, F., Amini, A., & Ayoubi, S. (2016). Weathering and soils formation on different parent materials in Golestan Province, Northern Iran. Journal of Mountain Science, 13(5), 870-881. doi: 10.1007/s11629-015-3567-x.
Makunina, N. I. (2010). The vegetation structure of steppe and forest-steppe altitudinal belts of Khakassia and Tuva mountain bassins. Rastitel'nyj Mir Aziatskoj Rossii (Plant Life of Asian Russia), 2, 50-57 (in Russian).
Mehnatkesh, A., Ayoubi, S., Jalalian, A., & Sahrawat, K. L. (2013). Relationships between soil depth and terrain attributes in a semi arid hilly region in western Iran. Journal of Mountain Science, 10(1), 163-172. doi: 10.1007/s11629-013-2427-9.
Meng, C., Niu, J. Z., Yin, Z. C., Luo, Z. T., Lin, X. N., & Jia, J. W. (2018). Characteristics of rock fragments in different forest stony soil and its relationship with macropore characteristics in mountain area, northern China. Journal of Mountain Science, 15(3), 519-531. doi: 10.1007/s11629-017-4638-y.
Novokreshchennykh, T. A., & Panova, O. V. (2007). Soils of cluster sites "Lake Bele" and "Lake Itkul" of reserve "Khakass". Tomsk State University Journal, 300-2, 202-204 (in Russian).
Pahlavan-Rad, M. R., & Akbarimoghaddam, A. (2018). Spatial variability of soil texture fractions and pH in a flood plain (case study from eastern Iran). Catena, 160, 275-281. doi: 10.1016/j.catena.2017.10.002.
Parnachev, V. P., & Degermendzhy, A. G. (2002). Geographical, geological and hydrochemical distribution of saline lakes in Khakasia, Southern Siberia. Aquatic Ecology, 36, 107-122. doi:
Regmi, N. R., & Rasmussen, C. (2018). Predictive mapping of soil-landscape relationships in the arid Southwest United States. Catena, 165, 473-486. doi: 10.1016/j.catena.2018.02.031.
Scarciglia, F., Conforti, M., Buttafuoco, G., Robustelli, G., Aucelli, P. P. C., Morrone, F., Casuscelli, F., & Palumbo, G. (2012). Integrated study of a soil catena in the Turbolo watershed (Calabria, southern Italy): Soil processes, hydrology and geomorphic dynamics. Rendiconti Online Societa Geologica Italiana, 21(PART 2), 1215-1217.
Shishov, L. L., Tonkonogov, V. D., Lebedeva, I. I., & Gerasimova, M. I. (2004). Klassifikatsiya i diagnostika pochv Rossii (Russian Soil Classification System). Smolensk: Oykumena.
Tanzybaev, M. G. (1993). Pochvy Khakasii (Soils of Khakassia). Novosibirsk: Nauka.
Tazikeh, H., Khormali, F., Amini, A., Motlagh, M. B., & Ayoubi, S. (2017). Soil-parent material relationship in a mountainous arid area of Kopet Dagh basin, North East Iran. Catena, 152, 252-267. doi: 10.1016/j.catena.2017.01.020.
Vingiani, S., Di Iorio, E., Colombo, C., & Terribile, F. (2018). Integrated study of Red Mediterranean soils from Southern Italy. Catena, 168, 129-140. doi: 10.1016/j.catena.2018.01.002.
Vorobyova, L. A. (Ed.) (2006). Theory and practice chemical analysis of soils. Moscow: GEOS (in Russian).
Zorkina, T. M., & Zhukova, V. M. (2012). Ecological-physiological characteristics of steppe vegetation influenced by recreation at Lake Belyo surroundings the Republic of Khakasia. Vestnik Khakasskogo Gosudarstvennogo Universiteta im. N.F. Katanova, 1, 20-22 (in Russian).

Share this article