The response of invertebrate communities to a moisture gradient in artificial soils of Ukrainian steppe arid zone

Abstract

A.V. Babchenko, M.P. Fedushko, E.I. Timchiy, Yu.A. Huska, S.V. Khalus

Animals were sampled within the experimental area using traps to investigate the spatial and temporal variation in abundance, species richness, and species composition of invertebrate communities. A total of 60 traps were operated simultaneously during each sampling period. Traps were emptied 26 times every 7-9 days each year.  Plant water availability, precipitation, wind speed, air temperature (minimum, maximum, daily mean), air humidity, and atmospheric pressure were used as ecological predictors of invertebrate community status and structure. Two-dimensional geographic coordinates of sampling locations were used to create a set of orthogonal spatial variables based on eigenvectors. We used time series of sampling dates to produce a set of orthogonal eigenvector time variables.  The moisture content in technosols was the most important factor determining the terrestrial invertebrate community's temporal dynamics under semi-arid climate and reclaimed ecosystem conditions. Each ecological group of terrestrial invertebrates is homogeneous in terms of moisture gradient (xerophilic, xerozoophilic, mesophilic) and has a specific set of patterns best explain the species response to water content in technosols. However, one should consider the fact that the species response to soil water content is influenced not only by soil water content but also by a complex of other environmental, temporal and spatial factors. That is why the effect of other factors on the species response must be extracted previously to find real estimations of the species optima and tolerance. This task can be solved using the constrained correspondence analysis (CCA) or constrained redundancy analysis (RDA) depending on the type of response to ecological factors prevailing in the community – monotone or unimodal. We found that in more dry conditions, the prevalent species responses are unimodal asymmetric, in moister – bimodal, and in moderate conditions, the distributions are symmetric unimodal. The asymmetric species response to soil moisture in different parts of the soil humidity range may be assumed as predominantly due to the abiotic factors in the gradient's aridest margin and due predominantly to the biotic factors in the most humid margin of the gradient.

Keywords: species response, niche, optima, tolerance, reclamation, gradient, temporal dynamic
 

References

 

Allen, C.R., Angeler, D.G., Garmestani, A.S., Gunderson, L.H. & Holling, C.S. (2014). Panarchy: theory and application. Ecosystems, 17(4), 578–589. DOI https://doi.org/10.1007/s10021-013-9744-2

Allen, R.G., Pereira, L.S., Raes, D. & Smith, M. (1998). Crop evapotranspiration: guidelines for computing crop water requirements. Irrigation and Drainage Paper 56. Rome, Italy: Food and Agriculture Organization of the United Nations. 1–15.

Allen, R.G., Smith, M., Perrier, A. & Pereira, L.S. (1994a). An update for the definition of reference evapotranspiration. ICID Bulletin, 43(2), 1–34.

Allen, R.G., Smith, M., Perrier, A. & Pereira, L.S. (1994b). An update for the definition of reference evapotranspiration. ICID Bulletin, 43(2), 35–92.

Angeler, D.G., Drakare, S. & Johnson, R.K. (2011). Revealing the organization of complex adaptive systems through multivariate time series modeling. Ecology and Society, 16(3), 5. https://www.jstor.org/stable/26268950

Austin, M.P. (1976). On non-linear species response models in ordination. Vegetatio, 33(1), 33-41. https://doi.org/10.1007/BF00055297

Austin, M.P. (1999). A silent clash of paradigms: some inconsistencies in community ecology. Oikos, 86(1), 170–178. DOI: 10.2307/3546582

Austin, M.P. (2013). Vegetation and Environment: Discontinuities and Continuities. Vegetation Ecology, Second Edition. Eddy van der Maarel and Janet Franklin. John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd., 52–84. https://doi.org/10.1002/9781118452592.ch3

Baho, D. L., Futter, M. N., Johnson, R. K. & Angeler, D. G. (2015). Assessing temporal scales and patterns in time series: Comparing methods based on redundancy analysis. Ecological Complexity, 22, 162–168. https://doi.org/10.1016/j.ecocom.2015.04.001

Beck, J. & Kitching, I.J. (2007). Correlates of range size and dispersal ability: a comparative analysis of sphingid moths from the Indo-Austalian tropics. Global Ecology and Biogeography, 16, 341–349. https://doi.org/10.1111/j.1466-8238.2007.00289.x

Bertness, M. & Callaway, R.M. (1994). Positive interactions in communities. Trends in Ecology and Evolution, 9(5), 191–193. https://doi.org/10.1016/0169-5347(94)90088-4

Bonsall, M.B. & Hastings, A. (2004). Demographic and environmental stochasticity in predator–prey metapopulation dynamics. Journal of Animal Ecology, 73, 1043–1055. https://doi.org/10.1111/j.0021-8790.2004.00874.x

Bonte, D., Baert, L. & Maelfait, J.-P. (2002). Spider assemblage structure and stability in a heterogenous coastal dune system (Belgium). Journal of Arachnology, 30, 331–343. doi: 10.1636/0161-8202(2002)030[0331:SASASI]2.0.CO;2

Borcard, D. & Legendre, P. (2002). All–scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling, 153, 51–68.

Borcard, D., Legendre, P., Avois–Jacquet, C. & Tuosimoto, H. (2004). Dissecting the spatial structure of ecological data at multiple scales. Ecology, 85, 1826–1832.

Bowker, M. A., Soliveres, S. & Maestre, F. T. (2010). Competition increases with abiotic stress and regulates the diversity of biological soil crusts. Journal of Ecology, 98(3), 551–560. doi:10.1111/j.1365-2745.2010.01647.x

Brandle, M., Durka, W., Krug, H. & Brandl, R. (2003). The assembly of local communities: plants and birds in non-reclaimed mining sites. Ecography, 26, 652–660.  doi: 10.1034/j.1600-0587.2003.03513.x

Brandle, M., Ohlschlager, S. & Brandl, R. (2002). Range size in butterflies: correlation across scales. Evolutionary Ecology Research, 4, 993–1004.

Brown, J. H. (1984). On the relationship between abundance and distribution of species. The American Naturalist, 124, 255–279.

Brown, J.H. (1999). Macroecology: progress and prospect. Oikos, 87, 3–14. DOI: 10.2307/3546991

Buchholz, S. (2009). Community structure of spiders in coastal habitats of a Mediterranean delta region (Nestos Delta, NE Greece). Animal Biodiversity and Conservation, 32(2). 101–115.

Buchori, D., Rizali, A., Rahayu, G.A. & Mansur, I. (2018). Insect diversity in post-mining areas: Investigating their potential role as bioindicator of reclamation success. Biodiversitas, 19, 1696–1702. DOI: 10.13057/biodiv/d190515

Burnham, K.P. & Anderson, D.R. (2002). Model selection and multi-model inference: a practical information-theoretic approach. Berlin: Springer.

Buzuk, G. N. (2017). Phytoindication with ecological scales and regression analysis: environmental index. Bulletin of Pharmacy, 2 (76), 31-37.

Chang, L.-W., Zelený, D., Li, C.-F., Chiu, S.-T. & Hsieh, C.-F. (2013). Better environmental data may reverse conclusions about niche-and dispersal-based processes in community assembly. Ecology, 94, 2145–2151. https://doi.org/10.1890/12-2053.1

Chase, J. M. & Myers, J. A. (2011). Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2351–2363. https://doi.org/10.1098/rstb.2011.0063

Chase, J. M., M. A. Leibold, A. L. Downing, & J. B. Shurin. (2000). The effects of productivity, herbivory, and plant species turnover in grassland food webs. Ecology, 81(9), 2485–2497. https://doi.org/10.1890/0012-9658(2000)081[2485:TEOPHA]2.0.CO;2

Collins, S.L., Belnap, J., Grimm, N.B., Rudgers, J.A., Dahm, C.N., D'Odorico, P., Litvak, M., Natvig, D.O., Peters, D.C., Pockman, W.T., Sinsabaugh, R.L. & Wolf, B.O. (2014). A multiscale, hierarchical model of pulse dynamics in arid-land ecosystems. Annual Review of Ecology, Evolution, and Systematics, 45, 397–419. https://doi.org/10.1146/annurev-ecolsys-120213-091650

Colwell, R.K. & Futuyma, D.J. (1971). Measurement of niche breadth and overlap. Ecology, 52, 567–576. DOI: 10.2307/1934144

Cottenie, K., (2005). Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters, 8, 1175–1182. doi:10.1111/j.1461-0248.2005.00820.x

Curtis, J. T., & McIntosh R. P. (1951). An Upland Forest Continuum in the Prairie-Forest Border Region of Wisconsin. Ecology, 32, 476–496. https://doi.org/10.2307/1931725

David, J.F., & Handa, I.T. ( 2010). The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change. Biological Reviews, 85(4), 881–895. doi: 10.1111/j.1469-185X.2010.00138.x.

Desender, K., Ervinck, A. & Tack, G. (1999). Beetle diversity and historical ecology of woodlands in Flanders. Belgian Journal of Zoology, 129(1), 139–155.

Devictor, V., Clavel, J., Julliard, R., Lavergne, S., Mouillot, D., Thuiller, W., Venail, P., Villéger, S., & Mouquet, N. (2010). Defining and measuring ecological specialization. Journal of Applied Ecology, 47, 15–25. doi:10.1111/j.1365-2664.2009.01744.x

Didukh, Y. P. (2011). The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Kyiv: Phytosociocentre.

Dray, S., Legendre, P. & Peres-Neto, P. (2006). Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbours matrices (PCNM). Ecological Modelling, 196, 483–493.

Dray, S., Pélissier, R., Couteron, P., Fortin, M.-J., Legendre, P., Peres-Neto, P. R., Bellier, E., Bivand, R., Blanchet, F. G., De Cáceres, M., Dufour, A.-B., Heegaard, E., Jombart, T., Munoz, F., Oksanen, J., Thioulouse, J. & Wagner, H. H. (2012). Community ecology in the age of multivariate multiscale spatial analysis. Ecological Monographs, 82, 257–275. https://doi.org/10.1890/11-1183.1

Dunger, W., Wanner, M., Hauser, H., Hohberg, K., Schulz, H.-J., Schwalbe, T., Seifert, B., Vogel, J., Voigtländer, K., Zimdars, B. & Zulka, K.P. (2001). Development of soil fauna at mine sites during 46 years after afforestation. Pedobiologia, 45(3), 243–271. https://doi.org/10.1078/0031-4056-00083.

Dvorský, M., Macek, M., Kopecký, M., Wild, J. & Dole?al, J. (2017). Niche asymmetry of vascular plants increases with elevation. Journal of Biogeography, 44(6), 1418–1425. doi:10.1111/jbi.13001

Elton, C. (1927). Animal Ecology. Sidgwick and Jackson, London.

Entling, W., Schmidt, M. H., Bacher, S., Brandl, R., & Nentwig, W. (2007). Niche properties of Central European spiders: shading, moisture and the evolution of the habitat niche. Global Ecology and Biogeography, 16, 440–448. doi:10.1111/j.1466-8238.2006.00305.x

Evett, S.R., Prueger, J.H. & Tolk, J.A. (2011). Water and energy balances in the soil-plantatmosphere continuum. In: Huang, P.M., Li, Y., Sumner, M.E. (Eds.). Handbook of soil sciences: properties and processes. 2nd ed. Boca Raton, Florida, USA: CRC Press. 6-1–6-44.

Gallé, R., Vesztergom, N. & Somogyi, T. (2011). Environmental conditions affecting spiders in grasslands at the lower reach of the River Tisza in Hungary. Entomologica Fennica, 22, 29–38.

Gaston, K.J., Blackburn, T.M., & Lawton, J.H. (1997). Interspecific abundance-range size relationships: an appraisal of mechanisms. Journal of Animal Ecology, 66(44), 579–601. doi: 10.2307/5951

Gauch, H. G. & Whittaker, R. H. (1972). Coenocline simulation. Ecology, 53(3), 446–451. https://doi.org/10.2307/1934231

Ge B., Daizhen, Z., Jun, C., Huabin, Z., Chunlin, Z. & Boping, T. (2014). Biodiversity Variations of Soil Macrofauna Communitiesin Forestsina Reclaimed Coastwith Different Diked History. Pakistan Journal of Zoology, 46(4). 1053–1059.

Gerlach, J., Samways, M. & Pryke, J. (2013). Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. Journal of Insect Conservation, 17(4), 831–850. https://doi.org/10.1007/s10841-013-9565-9

Gregory, R.D. & Gaston, K.J. (2000). Explanations of commonness and rarity in British breeding birds: separating resource use and resource availability. Oikos, 88, 515–526. https://doi.org/10.1034/j.1600-0706.2000.880307.x

Grinnell, J. (1917). The niche relationship of the California Thrasher. The Auk: Ornithological Advances, 34(4), 427–433. https://doi.org/10.2307/4072271

Hedde, M., Nahmani, J., Séré, G., Auclerc, A. & Cortet J. (2018). Early colonisationof constructed technosols by macro-invertebrates. Journal of Soils and Sediments, https://doi.org/10.1007/s11368-018-2142-9

Heegaard, E. (2002). The outer border and central border for species-environmental relationships estimated by non-parametric generalised additive models. Ecological Modelling, 157(2–3), 131–139. https://doi.org/10.1016/S0304-3800(02)00191-6

Hendrychova, M. (2008). Reclamation success in post-mining landscapes in the Czech Republic: a review of pedological and biological studies. Journal of Landscape Studies, 1, 63–78.

Hendrychova, M., Salek, M., Tajovsky, K., & Reho, M. (2011). Soil properties and species richness of invertebrates on afforested sites after brown coal mining. Restoration Ecology, 20 (5), 561–567. https://doi.org/10.1111/j.1526-100X.2011.00841.x

Hendrychová, M., Šálek, M. & ??ervenková, A. (2008). Invertebrate communities in man-made and spontaneously developed forests on spoil heaps after coal mining. Journal of Landscape Studies, 1, 169–187.

Hendrychová, M., Šálek, M., Tajovský, K. & ??eho??, M. (2012), Soil Properties and Species Richness of Invertebrates on Afforested Sites after Brown Coal Mining. Restoration Ecology, 20(5), 561–567. doi:10.1111/j.1526-100X.2011.00841.x

Hering, R., Hauptfleisch, M., Geißler, K., Marquart, A., Schoenen, M. & Blaum, N. (2019). Shrub encroachment is not always land degradation: Insights from ground???dwelling beetle species niches along a shrub cover gradient in a semi???arid Namibian savanna. Land Degradation & Devilopment, 30(1), 14– 24. https://doi.org/10.1002/ldr.3197

Hess, T. M. (1996). Evapotranspiration estimates for water balance scheduling in the UK. Irrigation News, 25, 31–36.

Hildmann, E., & Wunsche, M. (1996). Lignite mining and its after-effects on the central German landscape. Water, Air and Soil Pollution, (91), 79–87. doi: https://doi.org/10.1007/BF00280924

Hill, M.O. (1973). Reciprocal averaging: an eigenvector method of ordination. Journal of Ecology, 61(1), 237–249. DOI: 10.2307/2258931

Hodecek, J., Kuras, T., Sipos, J. & Dolny, A. (2016). Role of reclamation in the formation of functional structure of beetle communities: A different approach to restoration. Ecological Engineering, 94, 537–544. https://doi.org/10.1016/j.ecoleng.2016.06.027

Hodecek, J., Kuras, T., Sipos, J. & Dolny, A., (2015). Post-industrial areas as successional habitats: long-term changes of functional diversity in beetle communities. Basic and Applied Ecology, 16(7), 629–640. https://doi.org/10.1016/j.baae.2015.06.004

Huisman, J., Olff, H. & Fresco, L.F.M. (1993). A hierarchical set of models for species response analysis. Journal of Vegetation Science, 4(1), 37–46. https://doi.org/10.2307/3235732

Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbour Symposium on Quantitative Biology, 22, 415–427. http://dx.doi.org/10.1101/SQB.1957.022.01.039

Inbar, M., Doostdar, H. & Mayer, R. T. (2001). Suitability of stressed and vigorous plants to various insect herbivores. Oikos, 94(2), 228–235. doi: 10.1034/j.1600-0706.2001.940203.x

Jabloun, M. & Sahli, A. (2008). Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data: Application to Tunisia. Agricultural Water Management, 95(6), 707–715. https://doi.org/10.1016/j.agwat.2008.01.009

Jamil, T., & ter Braak, C. J. F. (2013). Generalized linear mixed models can detect unimodal species-environment relationships. PeerJ, 1:e95. doi: 10.7717/peerj.95

Jansen, F., & Oksanen, J. (2013). How to model species responses along ecological gradients – Huisman–Olff–Fresco models revisited. Journal of Vegetation Science, 24, 1108–1117. https://doi.org/10.1111/jvs.12050

K??dzior, R. (2018). Co-occurrence pattern of ground beetle (Coleoptera, Carabidae) indicates the quality of restoration practices in postindustrial areas. Applied Ecology and Environmental Research, 16(6), 7913–7924. DOI: http://dx.doi.org/10.15666/aeer/1606_79137924

Kielhorn, K.H., Keplin, B. & Hüttl, R.F. (1999). Ground beetle communities on reclaimed mine spoil: Effects of organic matter application and revegetation. Plant and Soil, 213(1–2), 117–125. https://doi.org/10.1023/A:1004508317091

Klimkina, I., Kharytonov, M. & Zhukov, O. (2018). Trend Analysis of Water-Soluble Salts Vertical Migration in Technogenic Edaphotops of Reclaimed Mine Dumps in Western Donbass (Ukraine). Journal of Environmental Research, Engineering and Management, 74 (2), 82–93. http://dx.doi.org/10.5755/j01.erem.74.2.19940

Knapp, M., Seidl, M., Knappová, J., Macek, M., & Saska, P. (2019). Temporal changes in the spatial distribution of carabid beetles around arable field-woodlot boundaries. Scientific reports, 9(1), 8967. doi: 10.1038/s41598-019-45378-7

Kohn, A. J. (1968). Microhabitats, abundance, and food of Conus in the Maldive and Chagos Islands. Ecology, 49, 1046–1061. https://doi.org/10.2307/1934489

Konstantinov, A.S., Korotyaev, B.A. & Volkovitsh, M.G., (2009). Insect biodiversity in the Palearctic region. In: Foottit, R., Adler, P. (Eds.), Insect Biodiversity: Science and Society. Blackwell Publisher, Chinchester, pp. 107–162.

Kunah, O. M., Zelenko, Y. V., Fedushko, M. P., Babchenko, A. V., Sirovatko, V. O., & Zhukov, O. V. (2019). The temporal dynamics of readily available soil moisture for plants in the technosols of the Nikopol Manganese Ore Basin. Biosystems Diversity, 27(2), 156–162. doi:10.15421/011921

Kunakh, O.N., Kramarenko, S.S., Zhukov, A.V., Zadorozhnaya, G.A. & Kramarenko, A.S. (2018). Intra-population spatial structure of the land snail Vallonia pulchella (Müller, 1774) (Gastropoda; Pulmonata; Valloniidae). Ruthenica, 28 (3), 91–99.

La Notte, A., D'Amato, D., Mäkinen, H., Paracchini, M.L., Liquete, C., Egoh, B., Geneletti, D. & Crossman, N.D. (2017). Ecosystem services classification: A systems ecology perspective of the cascade framework. Ecological Indicators, 74, 392–402. https://doi.org/10.1016/j.ecolind.2016.11.030

Laporta, G. Z. & Sallum, M. A. M. (2014). Coexistence mechanisms at multiple scales in mosquito assemblages. BMC Ecology, 14(1), 30.  DOI: 10.1186/s12898-014-0030-8

Lavelle, P., Bignell, D., Lepage, M., Wolters, V., Roger, P., Ineson, P., Heal, O.W. & Dhillion, S. (1997). Soil function in a changing world: the role of invertebrate ecosystem engineers. European Journal of Soil Science, 33, 159–193.

Lawton, J.H. (1999). Are there general laws in ecology? Oikos, 84, 177–192. DOI: 10.2307/3546712

Legendre, P., & Birks, H. J. B. (2012). From classical to canonical ordination. In Birks, H. J. B., Lotter, A. F., Juggins, S. & Smol, J. P. (Eds.), Tracking Environmental Change using Lake Sediments: Data handling and numerical techniques. 5, (pp. 201–248), Dordrecht, Springer.

Legendre, P. & Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species. Oecologia, 129(2), 271–280. DOI https://doi.org/10.1007/s004420100716

Levin, S.A., (1992). The problem of pattern and scale in ecology. Ecology, 73, 1943–1967. https://doi.org/10.2307/1941447

Liu, J.-L., Li, F.-R., Sun, T.-S., Ma, L.-F., Liu, L.-L. & Yang, K. (2016). Interactive effects of vegetation and soil determine the composition and diversity of Carabid and Tenebrionid functional groups in an arid ecosystem. Journal of Arid Environments, 128, 80–90. https://doi.org/10.1016/j.jaridenv.2016.01.009

Lososová, Z., Šmarda, P., Chytrý, M., Purschke, O., Pyšek, P., Sádlo, J., Tichý, L. & Winter, M. (2015). Phylogenetic structure of plant species pools reflects habitat age on the geological time scale. Journal of Vegetation Science, 26, 1080–1089. doi:10.1111/jvs.12308

Madej, G. & Kozub, M. (2014). Possibilities of using soil microarthropods, with emphasis on mites (Arachnida, Acari, Mesostigmata), in assessment of successional stages in a reclaimed coal mine dump (Pszów, S Poland). Biological Letters, 51(1), 19–36. doi: 10.1515/biolet-2015-0003

Mallis, R.E. & Hurd, L.E. (2005). Diversity among ground dwelling spider assemblages: habitat generalists and specialists. Journal of Arachnology, 33, 101–109. DOI: 10.1636/M03-34

Maraun, M., Martens, H., Migge, S., Theenhaus, A. & Scheu, S. (2003). Adding to 'the enigma of soil animal diversity': fungal feeders and saprophagous soil invertebrates prefer similar food substrates. European Journal of Soil Biology, 39, 85–95. https://doi.org/10.1016/S1164-5563(03)00006-2

Marc, P., Canard, A. & Ysnel F. (1999). Spiders (Araneae) useful for pest limitation and bioindication. Agriculture, Ecosystems and Environment, 74, 229–273. http://dx.doi.org/10.1016/S0167-8809(99)00038-9

Michaelis J., & Diekmann, M.R. (2017). Biased niches – Species response curves and niche attributes from Huisman-Olff-Fresco models change with differing species prevalence and frequency. PLoS ONE, 12(8), e0183152.https://doi.org/10.1371/journal.pone.0183152

Minchin, P.R. (1987). An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio, 69(1–3), 89–107. https://doi.org/10.1007/BF00038690

Monteith, J.L. (1965). Evaporation and the environment. In: The State and Movement of Water in Living Organisms, 19th Symposium of the Society for Experimental Biology, London, Cambridge University Press, 205–234.

Morón-Ríos, A., Rodríguez, M. Á., Pérez-Camacho, L. & Rebollo, S. (2010). Effects of seasonal grazing and precipitation regime on the soil macroinvertebrates of a Mediterranean old-field. European Journal of Soil Biology, 46(2), 91–96. https://doi.org/10.1016/j.ejsobi.2009.12.008.

Nash, K.L., Allen, C.R., Angeler, D.G., Barichievy, C., Eason, T., Garmestani, A.S., Graham, N.A.J., Granholm, D., Knutson, M., Nelson, R.J., Nystrom, M., Stow, C.A. & Sundstrom, S.M., (2014). Discontinuities, cross-scale patterns, and the organization of ecosystems. Ecology, 95, 654–667. https://doi.org/10.1890/13-1315.1

Okie, J. G., Van Horn, D. J., Storch, D., Barrett, J. E., Gooseff, M. N., Kopsova, L., & Takacs-Vesbach, C. D. (2015). Niche and metabolic principles explain patterns of diversity and distribution: theory and a case study with soil bacterial communities. Philosophical Transactions of the Royal Society B: Biological Sciences, 282, 20142630. http://dx.doi.org/10.1098/rspb.2014.2630

Oksanen, J. (2004). Multivariate Analysis in Ecology. Lecture Notes. Department of Biology, Universityof Oulu. http://cc.oulu.fi/~jarioksa/opetus/metodi/notes.pdf

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M. H. H. & Wagner, H. (2018). Community Ecology Package. R package version 2.5-2. https://CRAN.R-project.org/package=vegan

Paoletti, M. G. & Hassall, M. (1999). Woodlice (Isopoda: Oniscidea): their potential for assessing sustainability and use as bioindicators. Agriculture, Ecosystems and Environment, 74(1–3), 157–165. https://doi.org/10.1016/S0167-8809(99)00027-4

Paoletti, M.G., Osler, G.H.R., Kinnear, A., Black, D.J., Thomson, L.J., Tsitsilas, A., Sharley, D., Judd, S., Neville, P. & D'inca, A. (2007). Detritivores as indicators of landscape stress and soil degradation. Australian Journal of Experimental Agriculture, 47(4), 412–423. doi: 10.1071/EA05297

Penman, H.L., (1948). Natural evaporation from open water, bare soil, and grass. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 193(1032), 120–145. http://www.jstor.org/stable/98151

Pereira, L. S., Cai, L. G. & Hann, M. J. (2003). Farm water and soil management for improved water use in the North China Plain. Irrigation and Drainage, 52(4), 299–317. https://doi.org/10.1002/ird.98

Pontegnie, M., du Bus de Warnaffe, G.  & Lebruna, Ph. (2005). Impacts of silvicultural practices on the structure of hemi-edaphic macrofauna community. Pedobiologia, 49(3), 199–210. doi: 10.1016/j.pedobi.2004.09.005

Popova, Z., Eneva, S., & Pereira, L. S. (2006). Model validation, crop coefficients and yield response factors for maize irrigation scheduling based on long-term experiments. Biosystems Engineering, 95(1), 139–149. https://doi.org/10.1016/j.biosystemseng.2006.05.013

Price, P. W. (1991). The Plant Vigor Hypothesis and Herbivore Attack. Oikos, 62 (2), 244–251. doi: 10.2307/3545270

Purse, B. V., Gregory, S. J., Harding, P. & Roy, H. E. (2012). Habitat use governs distribution patterns of saprophagous (litter-transforming) macroarthropods – a case study of British woodlice (Isopoda: Oniscidea). European Journal of Entomology, 109, 543–552. doi: 10.14411/eje.2012.068

Rao, C.R. (1995). A review of canonical coordinates and an alternative to correspondence analysis using Hellinger distance. Qüestiió, 19(1–3), 23–63. http://hdl.handle.net/2099/4059

Rehor, M., Lang, T. & Eis, M. (2006). Application of new methods in solving current reclamation issues of Severoceske doly, a.s. localities. World of Surface Mining, 6, 383–386.

Reynolds, J.F., Smith, D.M.S., Lambin, E.F., Turner, B.L., Mortimore, M., Batterbury, S.P., Downing, T.E., Dowlatabadi, H., Fernández, R.J., Herrick, J.E., Huber-Sannwald, E., Jiang, H., Leemans, R., Lynam, T., Maestre, F.T., Ayarza, M. & Walker, B. (2007). Global desertification: building a science for dryland development. Science, 316(5826), 847–51. doi: 10.1126/science.1131634

Rushton, S.P. & Eyre, M.D. (1992). Grassland spider habitats in north-east England. Journal of Biogeography, 19, 99–108. doi: 10.2307/2845623

Schoener, T.W. (1974). The compression hypothesis and temporal resource partitioning. Proceedings of the National Academy of Sciences, 71(10), 4169−4172. doi: 10.1073/pnas.71.10.4169

Schwinning, S. & Sala, O.E. (2004). Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia, 141(2), 211–220. DOI: 10.1007/s00442-004-1520-8

Silvertown, J., McConway, K., Gowing, D., Dodd, M., Fay, M.F., Joseph, J.A. & Dolphin, K. (2006). Absence of phylogenetic signal in the niche structure of meadow plant communities. Proceedings of the Royal Society of London, Series B, 273, 39–44.

Sklenicka, P., Prikryl, I., Svoboda, I. & Lhota, T. (2004). Non-productive principles of landscape rehabilitation after long-term opencast mining in north-west Bohemia. Journal of the South African Institute of Mining and Metallurgy, 104, 83–88.

Slabbers, P. J. (1980). Practical prediction of actual evapotranspiration. Irrigation Science, 1(3), 185–196. https://doi.org/10.1007/BF00270883

Šmilauer, P. & Lepš, J. (2014). Multivariate Analysis of Ecological Data using CANOCO 5. Cambridge: Cambridge University Press. doi: 10.1017/CBO9781139627061

Soberon, J. (2007). Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters, 10(12), 1115–1123. https://doi.org/10.1111/j.1461-0248.2007.01107.x

Souty-Grosset, C., Badenhausser, I., Reynolds, J.D. & Morel, A. (2005). Investigations on the potential of woodlice as bioindicators of grassland habitat quality. European Journal of Soil Biology, 41(3), 109–116. doi: 10.1016/j.ejsobi.2005.09.009

Spanbauer, T.L., Allen, C.R., Angeler, D.G., Eason, T., Fritz, S.C., Garmestani, A.S., Nash, K.L. & Stone, J.R. (2014). Prolonged instability prior to a regime shift. PLoS ONE, 9, e108936. https://doi.org/10.1371/journal.pone.0108936

Szczepanska, J. & Twardowska, I., (1999). Distribution and environmental impact of coal-mining wastes in Upper Silesia Poland. Environmental Geology. 38, 249–258. DOI https://doi.org/10.1007/s002540050422

Tarjuelo, R., Morales, M. B., Arroyo, B., Mañosa, S., Bota, G., Casas, F., & Traba, J. (2017). Intraspecific and interspecific competition induces density-dependent habitat niche shifts in an endangered steppe bird. Ecology and evolution, 7(22), 9720–9730. doi:10.1002/ece3.3444

ter Braak C, J. F. (1985). Correspondence Analysis of Incidence and Abundance Data: Properties in Terms of a Unimodal Response Model. Biometrics, 41(4), 859–73. DOI: 10.2307/2530959

ter Braak, C. J. F., & Smilauer, P. (2015). Topics in constrained and unconstrained ordination. Plant Ecology, 216(5), 683–696. https://doi.org/10.1007/s11258-014-0356-5

ter Braak, C.J.F. & Smilauer, P. (2002) Canoco reference manual and CanoDraw for Windows user's guide. Biometris, Wageningen.

ter Braak, C.J.F., & Looman, C.W.N. (1986). Weighted averaging, logistic regression and the Gaussian response model. Vegetatio, 65, 3–11. https://doi.org/10.1007/BF00032121

ter Braak, C.J.F. & Prentice, I.C. (1988). A theory of gradient analysis. Advances in Ecological Research, 18, 271–317.

Tokeshi, M. (1999) Species coexistence: ecological and evolutionary perspectives. Blackwell Science, London.

Trotter, R. T., Cobb, N. S. & Whitham, T. G. (2008). Arthropod community diversity and trophic structure: a comparison between extremes of plant stress. Ecological Entomology, 33, 1-11. doi:10.1111/j.1365-2311.2007.00941.x

Warburg, M.R., Linsenmair, K.E. & Bercovitz, K. (1984). The effect of climate on the distribution and abundance of Isopods. Symposia of the Zoological Society of London, 53, 339–367.

Westhoff, V. & van der Maarel, E. (1978). The Braun-Blanquet approach. In: Whittaker, R.H. (Ed.), Classification of Plant Communities, pp. 289-399.

White, T.C.R. (1976). Weather, food, and plagues of locusts. Oecologia, 22(2), 119 – 134. DOI https://doi.org/10.1007/BF00344712

White, T.C.R. (1984). The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia, 63(1), 90–105. https://doi.org/10.1007/BF00379790

Wise, D. H. (1993). Spiders in ecological webs. Cambridge University Press, Cambridge.

Yorkina, N., Maslikova, K., Kunah, O. & Zhukov, O. (2018). Analysis of the spatial organization of Vallonia pulchella (Muller, 1774) ecological niche in Technosols (Nikopol manganese ore basin, Ukraine). Ecologica Montenegrina, 17, 29–45.

Yorkina, N., Zhukov, O. & Chromysheva, O. (2019). Potential possibilities of soil mesofauna usage for biodiagnostics of soil contamination by heavy metals. Ekológia (Bratislava), 38 (1), 1–10. doi: 10.2478/eko-2019-0001

Zhenqi, H., Peijun, W. & Jing, L. (2012). Ecological Restoration of Abandoned Mine Land in China. Journal of Resources and Ecology, 3(4), 289–296. DOI:10.5814/j.issn.1674-764x.2012.04.001

Zadorozhnaya, G. A., Andrusevych, K.V. & Zhukov, O.V. (2018). Soil heterogeneity after recultivation: ecological aspect. Folia Oecologica, 45 (1), 46–52. doi: 10.2478/foecol-2018-0005

Zhukov, O., Kunah, O., Dubinina, Y. & Novikova, V. (2018). The role of edaphic and vegetation factors in structuring beta diversity of the soil macrofauna community of the Dnipro river arena terrace. Ekológia (Bratislava), 37, 3, 301–327. doi: 10.2478/eko-2018-0023

Zhukov, A. & Gadorozhnaya, G. (2016). Spatial heterogeneity of mechanical impedance of a typical chernozem: the ecological approach. Ekológia (Bratislava), 35, 263–278. DOI: https://doi.org/10.1515/eko-2016-0021

Zhukov, O. V. & Maslikova, K. P. (2018). The dependence of the technosols models functional properties from the primary stratigraphy designs. Journal of Geology, Geography and Geoecology, 27(2), 399–407. doi: 10.15421/111864

Share this article