Comparative flower micromorphology and anatomy in Hymenocallis spesiosa and Narcissus pseudonarcissus (Amaryllidaceae)

Abstract

O. Fishchuk, A. Odintsova

The structure of the flower parts of Hymenocallis speciosa (L. f. ex Salisb.) Salisb. and Narcissus pseudonarcissus L. were examined under light microscopy on permanent preparation of transverse and longitudinal sections of the flower. The work aimed to find out the features of the flower micromorphology and anatomy, the internal structure of the gynoecium in family members, which have not yet been studied in this aspect, and conduct a comparative analysis with the studied family members. The flowers of the studied species are three-merous and have the same structure, with a tubular perigonium, the inferior ovary, but differ in the structure of the corona (formed from stamens in Hymenocallis speciosa and perigonium in Narcissus pseudonarcissus). Stamens and tepals are six. Stamens attached to the perigonium tube. The most significant difference is shown by the vertical gynoecium zonality of the studied species, namely, the presence and relative height of the vertical zones in the ovary. Namely, in Hymenocallis speciosa, most of the ovary is formed by a hemisymplicate zone, there is no synascidiate zone in the ovary, two basal ovules, septal nectaries are located almost from the ovary base to the style base. In Narcissus pseudonarcissus, we found all zones of eusuncarpous gynoecium, synastidiate, symplicate and hemisymplicate, with many ovules and septal nectaries located at the top of the ovary. In both species, the asymplicate (apocarpous) zone forms a style above the opening of the nectary cavities to the outside and a stigma. The septal nectaries in Hymenocallis speciosa and Narcissus pseudonarcissus are long, non-labyrinthine, "lilioid"-type, with an apical output channel. The vascular system of the studied species has significant similarities, in particular, multibundled traces of tepals, formation of stamens traces, and dorsal vascular carpels bundles at the base of the inferior ovary, which supply the ovules and septal nectaries from paired ventral vascular carpels bundles which formed at the ovary base from vascular bundles of the ventral complex. Narcissus pseudonarcissus flower is similar to the representatives of the tribe Galantheae - Galanthus nivalis, and Leucojum vernum, studied earlier in the presence of synascidiate symplicate vertical ovary zones, numerous ovules, and aerenchyma in the flower organs.

Keywords: Hymenocallis speciosa, Narcissus pseudonarcissus, septal nectary, vascular anatomy, inferior ovary, vertical zonality, syncarpous gynoecium.
 

References

 

Arber, A. (1937). Studies in flower structure III. On the corona and androecium in certain Amaryllidaceae. Annals. Botany.II, 1, 293–304.

Arroyo, J., & Dafni, A. (1995). Variations in habitat, season, flower traits and pollinators in dimorphic Narcissus tazetta L. (Amaryllidaceae) in Israel. New Phytologist, 129, 135–146. doi: 10.1111/j.1469-8137.1995.tb03017.x

Barrett, S.C.H., Lloyd, D.G., & Arroyo, J. (1996). Stylar Polymorphisms and the Evolution of Heterostyly in Narcissus (Amaryllidaceae). In: Lloyd D.G., Barrett S.C.H. (eds) Floral Biology. Springer, Boston, MA. doi: 10.1007/978-1-4613-1165-2_13

Barrett, S.C.H. (1993). The evolutionary biology of tristyly. In Oxford Surveys in Evolutionary Biology, 9, pp. 283–326.

Barykina, R. P., Veselova, T. D., Deviatov, A. G., Djalilova, H. H., Iljina, G. M., & Chubatova, N. V. (2004). Spravochnik po botanicheskoy mikrotehnike. Osnovyi i metodyi [Handbook of the botanical microtechniques]. Izdatelstvo Moskovskogo universiteta, Moskva (in Russian).

Chase, M. W., Christenhusz, M. J. M., Fay, M. F., Byng, J. W., Judd, W. S., Soltis, D. E., Mabberley, D. J., Sennikov, A. N., Soltis, P. S., & Stevens, P. F. (2016). The angiosperm phylogeny group. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants APG IV. Botanical Journal of the Linnean Society, 181, 1–20. doi:10.1111/boj.12385

Chase, M. W., Reveal, J. L., & Fay, M. F. (2009). A subfamilial classification for the expanded asparagalean families Amaryllidaceae, Asparagaceae and Xanthorrhoeaceae. Botanical Journal of the Linnean Society, 161(2), 132–136. doi:10.1111/j.1095-8339.2009.00999.x

Chwil, M. (2006). Ecology of flowers and morphology of pollen grains of selected Narcissus varieties (Narcissus pseudonarcissus x Narcissus poëticus). Acta Agrobotanica, 59, 107–122. doi:10.5586/aa.2006.011

Daumann, E. (1970). Das Blütennektarium der Monocotyledonen unter besonderer Berücksichtigung seiner systematischen und phylogenetischen Bedeutung. Feddes Repertorium, 80(7-8), 463–590.

Dhiman, M. R., Kumar, S., Parkash, C., Gautam, N., & Singh, R. (2019). Genetic diversity and principal component analysis based on vegetative, floral and bulbous traits in narcissus (Narcissus pseudonarcissus L.). International Journal of Chemical Studies, 7(1), 724-729

Ferdausi, A., Chang, X., Hall, A., & Jones, M. (2020). Galanthamine production in tissue culture and metabolomic study on Amaryllidaceae alkaloids in Narcissus pseudonarcissus cv. Carlton Industrial Crops and Products, 144 (112058), 1–12. doi: 10.1016/j.indcrop.2019.112058

Fishchuk, O. S., & Odintsova, A. V. (2020). Micromorphology and anatomy of the flowers of Galanthus nivalis and Leucojum vernum (Amaryllidaceae). Regulatory Mechanisms in Biosystems, 11(3), 463–468. doi:10.15421/022071

Fishchuk, O., Odintsova, A., & Sulborska, A. (2014). Gynoecium structure in Dracaena fragrans (L.) Ker Gawl., Sansevieria parva N.E. Brown and Sansevieria trifasciata Prain (Asparagaceae) with septal emphasis on the structure of the septal nectary. Acta Agrobotanica, 66(4), 55–64. doi: 10.5586/aa.2013.051

García, N., Meerow, A. W., Arroyo-Leuenberger, S., Oliveira, R. S., Dutilh, J. H., Soltis, P. S., & Judd, W. S. (2019). Generic classification of Amaryllidaceae tribe Hippeastreae. Taxon, 68(3), 425–612. doi:10.1002/tax.12062

Grabsztunowicz, M., Mulo, P., Baymann, F., Mutoh, R., Kurisu, G., Sétif, P., Beyer, P. & Krieger?Liszkay, A. (2019). Electron transport pathways in isolated chromoplasts from Narcissus pseudonarcissus L. The Plant Journal, 99, 245–256. doi: 10.1111/tpj.14319

Hammoda, H. M., Abou-Donia, A. H., Toaima, S. M., Shawky, E., Kinoshita, E., & Takayama H. (2018). Phytochemical and biological investigation of Narcissus pseudonarcissus cultivated in Egypt. Records of Pharmaceutical and Biomedical Sciences, 2(1), 26–34. doi: 10.21608/rpbs.2018.3769.1002

Hulcová D., Ma?íková J., Korábe?ný J., Hoš?álková A., Jun D., Kuneš J., Chlebek J., Opletal L., Simone A. De, Nováková L., Andrisano V., R??i?ka A., & Cahlíková L. (2019). Amaryllidaceae alkaloids from Narcissus pseudonarcissus L. cv. Dutch Master as potential drugs in treatment of Alzheimer's disease. Phytochemistry, 165, 112055. doi: 10.1016/j.phytochem.2019.112055

Leinfellner, W. (1950). Der Bauplan des syncarpen Gynoeceums. Österreichische Botanische Zeitschrift, 97, 3-5, 403–436.

Liu, X., Tang, D., & Shi, Y. (2018). Volatile compounds in perigonium and corona of Narcissus pseudonarcissus cultivars. Natural Product Research, 33(24), 1–4. doi:10.1080/14786419.2018.1499632

Liu, X., Tang, D., Du, H., &Shi, Y. (2018). Transcriptome sequencing and biochemical analysis of perigoniums and coronas reveal flower color formation in Narcissus pseudonarcissus. International Journal of Molecular Sciences, 19, 4006. doi:10.3390/ijms19124006

Liu, X., Zhang, X., Shi, Y., & Tang, D. (2017). Genetic diversity analysis of nine narcissus based on morphological characteristics and random amplified polymorphic DNA markers. HortScience: a publication of the American Society for Horticultural Science, 52(2), 212–220. doi: 10.21273/HORTSCI11171-16

Mamun, A. Al, Ma?ríková, J., Hulcová D., Janoušek, J., Šafratová, M., Nováková, L., Ku?cera, T., Hrabinová, M., Kuneš, J., Korábe?cný, J., & Cahlíková, L. (2020). Amaryllidaceae alkaloids of belladine-type from Narcissus pseudonarcissus cv. Carlton as new selective inhibitors of butyrylcholinesterase. Biomolecules 10, 800. doi:10.3390/biom10050800

Marques, I., Feliner, G. N., Draper Munt, D., Martins-Loução, M., & Aguilar, J. F. (2010). Unraveling cryptic reticulate relationships and the origin of orphan hybrid disjunct populations in Narcissus. Evolution 64, 2353–2368.

Marques, I., Fuertes Aguilar, J., Martins-Louçao, M.A., Moharrek, F., & Nieto Feliner, G. (2017). A three?genome five?gene comprehensive phylogeny of the bulbous genus Narcissus (Amaryllidaceae) challenges current classifications and reveals multiple hybridization events. Taxon, 66(4), 832–854. doi 10.12705/664.3 

Meerow, A. W., & Snijman D. A. (1998). Amaryllidaceae. In: Kubitzki, K., Huber, H., Rudall, P. J. Stevens, P. S., Studzel, T. (ed.). The families and genera of vascular plants. III. Flowering plants: Monocotyledons: Lilianae (except Orchidaceae) Springer, Berlin, ??. 83–110.  doi: 10.2307/4111190

Meerow, A.W., Francisco-Ortega, J., & Schnell, R.J. (2006). Phylogenetic relationships and biogeography within the Eurasian clade of Amaryllidaceae based on plastid ndhF and nrDNA ITS sequences: lineage sorting in a reticulate area? Systematic Botany, 31 (1), 42–60. doi: 10.1600/036364406775971787. JSTOR 25064128. 

Newton, R.J., Hay, F.R., Ellis, R.H. (2015). Ecophysiology of seed dormancy and the control of germination in early spring-flowering Galanthus nivalis and Narcissus pseudonarcissus (Amaryllidaceae). Botanical Journal of the Linnean Society, 177, 246–262. doi: 10.1111/boj.12240

Newton, R., Hay, F. R., & Ellis, R.H. (2020). Temporal patterns of seed germination in early spring-flowering temperate woodland geophytes are modified by warming. Annals of Botany, 125(7). doi: 10.1093/aob/mcaa025

Novikoff, A., & Odintsova, ?. (2008). Some aspects of gynoecium morphology in three bromeliad species. Wulfenia, 15, 13–24.

Odintsova A. (2013). Dva osnovnyx typy septalnyx nektarnykiv odnodolnyx. [Two main types of septal nectaries in monocotyledons]. Visnyk Lvivskogo universytetu. Seriya biologichna, 61, 41–50. (in Ukraine)

Odintsova, A, & Fishchuk, O. (2017). The flower morphology in three Convallariaceae species with various attractive traits. Acta Agrobotanica, 70(1), 1705–1719. doi: 10.5586/aa.1705

Phillips, H. R, Landis, J.B., & Specht C. D. (2020). Floral Fusion: The Evolution and Molecular Basis of a Developmental Innovation. Journal of Experimental Botany. doi: 10.1093/jxb/eraa125/5802329

Rasmussen, F. N., Frederiksen, S., Johansen, B., Jorgensen, L. B., Petersen, G., & Seberg, O. (2006). Fleshy Fruits in Liliiflorous Monocots. Aliso: A Journal of Systematic and Evolutionary Botany, 22(1), 135–147.

Rudall, P. J. (2002). Homologies of inferior ovaries and septal nectaries in Monocotuledons. International Journal of Plant Sciences, 163, 261–276. doi: 10.1086/338323

Schmid, R. (1985). Functional interpretations of the morphology and anatomy of septal nectaries. Acta botanica neerlandica, 4 (1), 125–128.

Scotland, R.W. (2013). Some observations on the homology of the daffodil corona. In Wilkin P., Mayo S.T. (eds). Early events in monocot evolution. Cambridge Universal Press, Cambridge, 297–303.

Shamrov, I. I. (2010). The peculiarities of syncarpous gynoecium formation in some monocotyledonous plants. Botanical Journal. 95(8): 1041–1070.

Singh, A., & Misra, S. (2017). Hymenocallis. Commercial Ornamental Crops: Traditional and Loose Flowers, 163–170

Skrypec, K., & Odintsova, A. (2020). Morphogenesis of fruits in Gladiolus imbricatus and Iris sibirica (Iridaceae). Ukrainian Botanical Journal, 77(3), 210–224. doi: 10.15407/ukrbotj77.03.210

Stevens P. F. (2020) Angiosperm Phylogeny. Available from: http://www.mobot.org/MOBOT/research/APweb/

Tanee, T., Sudmoon, R., Siripiyasing, P., Suwannakud, K. S., Monkheang, P., & Chaveerach, A. (2018). New karyotype Information of Hymenocallis littoralis, Amaryllidaceae. Cytologia, 83(4), 437–440. doi: 10.1508/cytologia.83.437

Vaz, A.S., Silva, D., Alves, P., Vicente, J.R., Caldas, F.B., Honrado, J.P., & Lomba, A. (2016). Evaluating population and community structure against climate and land-use determinants to improve the conservation of the rare Narcissus pseudonarcissus subsp. nobilis. Annals of the Botanical Garden of Madrid, 73(1), e027.

Vogel, S. (1998). Floral biology. In: Kubitzki, K., Huber, H., Rudall, P. J. Stevens, P. S., Studzel, T. (ed.). The families and genera of vascular plants. III. Flowering plants: Monocotyledons: Lilianae (except Orchidaceae) Springer, Berlin, ??. 34–48. doi: 10.2307/4111190

Zeybeko?lu, E., Asciogul, T. K., Ilbi H., & Ozzambak, M. E. (2019). Genetic diversity of some Daffodil (Narcissus L. spp.) Genotypes from Turkey by Using SRAP Markers. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(4), 1293–1298. doi: 10.15835/nbha47411664

Share this article