Comparative histochemical analysis of phosphatases activity of the skin glands in some artiodactyls

Abstract

A.B. Kiladze, N.K. Dzhemukhadze

We determined the histochemical activity of phosphatases of sweat and sebaceous glands in the withers of three artiodactyls species — roe deer Capreolus capreolus  Linnaeus,  1758,  musk deer Moschus moschiferus Linnaeus,  1758,  and Saiga tatarica Linnaeus,  1766. Equal values of acid phosphatase activity  (60% level of relative activity),  alkaline phosphatase  (80% level of relative activity),  and adenosine triphosphatase  (100% level of relative activity) for both the sweat and sebaceous glands of roe deer founded. Only for alkaline phosphatase,  a 60% level of relative activity founded in the sweat glands of musk deer,  while the remaining parameters of phosphatase activity in both types of skin glands of musk deer showed zero values. Moderate levels of activity of acid phosphatase and alkaline phosphatase  (60% level of relative activity),  as well as an average level of adenosine triphosphatase activity  (80% level of relative activity) are typical for both the sweat and sebaceous glands of saiga. Synchronicity in the parameters of histochemical activity in both the sweat and sebaceous glands revealed,  which may be associated with physiological adaptation. Coordinate analysis based on digital analogues of the histoenzymatic activity of the skin glands made it possible to calculate the Euclidean distances between the studied species. In the sweat and sebaceous glands the following individual distances identified:   (1) distances between roe deer and musk deer are 5.92 and 7.07;  (2) distances between the roe deer and saiga are coincide and equal to 1.41 and 1.41;  (3) distances between musk deer and saiga are 5.00 and 5.83. Phenetic analysis,  which includes 18 parameters of histoenzymatic activity — three types of phosphatases in the sweat and sebaceous glands of three species of artiodactyls — proximity of the values ​​of roe deer and saiga at an obvious distance of the parameters of musk deer revealed. The Euclidean distances for the three species of artiodactyls were:   (1) distance between the roe deer and musk deer is 9.22;  (2) distance between roe deer and saiga is 2.00;  (3) distance between musk deer and saiga is 7.68.

Keywords: Histochemistry; Phosphatases; Analytical geometry; Cluster analysis; Artiodactyls; Ruminants; Pecora; Roe deer; Musk deer; Saiga

References

Aljohani,  S.  (2016). Analytic Geometry of Three Dimensions. International Journal of Scientific and Engineering Research,  7 (4),  185−186.

Azgaldov,  G.,  & Kostin,  A.  (2011). Applied qualimetry:  its origins,  errors and misconceptions. Benchmarking:  An International Journal,  18 (3),  428–444. https: //doi.org/10.1108/14635771111137796

Azgaldov,  G. G.,  Kostin,  A. V.,  & Padilla Omiste,  A. E.  (2015). The ABC of Qualimetry:  The toolkit for measuring immeasurable / interpreter E. Azgaldov. Ridero,  Yekaterinburg.

Barca,  T.,  & Anderson,  P.  (1963). Histochemistry. Theory,  Practice and Bibliography. Evanston,  New York.

Bell,  M.  (1986). Sebaceous Glands. In:  Bereiter-Hahn,  J.,  Matoltsy,  A. G.,  & Richards,  K. S.  (eds). Biology of the Integument. Springer,  Berlin,  Heidelberg,  318−338. https: //doi.org/10.1007/978-3-662-00989-5_18

Burbaitė,  L.,  & Csányi,  S.  (2009). Roe deer population and harvest changes in Europe. Estonian Journal of Ecology,  58 (3),  169−180. DOI:  10.3176/eco.2009.3.02

Burstone,  M. S.  (1962). Enzyme Histochemistry and Its Application in the Study of Neoplasms. Academic Press,  New York.

Chernova,  O. F.,  & Kiladze,  A. B.  (2019). Heterochrony as the basis for inter- and intraspecific diversity of skin in vertebrates. Biology Bulletin Reviews,  9 (2),  174–189. https: //doi.org/10.1134/S207908641902004X

Cui,  C.‐Y.,  & Schlessinger,  D.  (2015). Eccrine sweat gland development and sweat secretion. Experimental Dermatology,  24 (9),  644−650. doi:  10.1111/exd.12773

Doughty,  H.,  Verissimo,  D.,  Tan,  R. C. Q.,  Lee,  J. S. H.,  Carrasco,  L. R.,  Oliver,  K.,  & Milner-Gulland,  E. J.  (2019). Saiga horn user characteristics,  motivations,  and purchasing behaviour in Singapore. PLoS ONE,  14  (9):  e0222038. https: //doi.org/10.1371/journal. pone.0222038

Dzhemukhadze,  N. K.  (2007). The dependence of interspecific differences in the histoenzymatic parameters of skin glands between Norway  (Rattus norvegicus) and black  (Rattus rattus) rats on their social behavior. Doklady Biological Sciences,  416 (1),  368–370. doi:  10.1134/S0012496607050122

Dzhemukhadze,  N. K.,  & Kiladze,  A. B.  (2008). Comparison of the activity of some phosphatases in the midventral gland and nonspecific sebaceous glands of the neck in the Campbell hamster  (Phodopus campbelli). Doklady Biological Sciences,  423 (1),  447–449. doi:  10.1134/S0012496608060239

Gagnon,  D.,  Ganio,  M. S.,  Lucas,  R. A.,  Pearson J.,  Crandall C. G.,  Kenny G. P.  (2012). Modified iodine-paper technique for the standardized determination of sweat gland activation. J Appl Physiol,  112,  1419–1425. doi: 10.1152/japplphysiol.01508.2011

Gomori,  G.  (1952). Microscopic Histochemistry:  Principles and Practice. University of Chicago Press,  Chicago.

Gower,  J. C.  (1967). A Comparison of Some Methods of Cluster Analysis. Biometrics,  23 (4),  623–637. DOI:  10.2307/2528417

Hashimoto,  K.,  Hori,  K.,  & Aso,  M.  (1986). Sweat Glands. In:  Bereiter-Hahn,  J.,  Matoltsy,  A. G.,  & Richards,  K. S.  (eds). Biology of the Integument. Springer,  Berlin,  Heidelberg,  339−356. https: //doi.org/10.1007/978-3-662-00989-5_19

IUCN SSC Antelope Specialist Group  (2018). Saiga tatarica. The IUCN Red List of Threatened Species 2018:  e.T19832A50194357. http: //dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T19832A50194357.en. Downloaded on 07 January 2020.

Khludeev,  K. D.,  & Gordienko,  I. M.  (2008). Tovarovedenie i ekspertiza kozhevennogo syriya [Commodity Research and Examination of Raw Hides and Skins]. Koloss,  Moscow.  (in Russian).

Kiladze,  A. B.,  & Dzhemukhadze,  N. K.  (2013). Kvalimetriya v gistohimii fermentov  (na primere kozhnyh zhelez mlekopitayushchih) [Qualimetry in the histochemistry of enzymes in mammalian skin glands]. Infra-Inzheneriya,  Moscow.  (in Russian).

Kiladze,  A. B.,  & Dzhemukhadze,  N. K.  (2019). Evaluation of sexual dimorphism of histochemical activity of phosphatases of the plantar glands of Norway rats  (Rattus norvegicus). Biosystems Diversity,  27 (1),  39–42. doi: 10.15421/011906

Kiladze,  A. B.,  & Dzhemukhadze,  N. K.  (2020). Biokvalimetricheskij analiz aktivnosti fosfataz zhelez kozhnogo pokrova seryh i chernyh krys [Bioqualimetric study of the phosphatases activity of skin glands of Norway rats and black rats]. Institute of Computer Science,  Moscow,  Izhevsk, (In Russian).

Kuznetsov,  B. A.  (2005). Tovarovedenie vtorostepennyh vidov životnogo syriya [Commodity studies of secondary types of animal raw materials]. Aquarium-Print Ltd.,  Moscow.  (in Russian).

Lobanov,  A. S.  (2013). The basic concepts of qualimetry. Scientific and Technical Information Processing,  40,  72–82. https: //doi.org/10.3103/S0147688213020044

Lovari,  S.,  Herrero,  J.,  Masseti,  M.,  Ambarli,  H.,  Lorenzini,  R.,  & Giannatos,  G.  (2016). Capreolus capreolus. The IUCN Red List of Threatened Species 2016: e.T42395A22161386. http: //dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T42395A22161386.en. Downloaded on 07 January 2020.

Marcon,  A.,  Battocchio,  D.,  Apollonio,  M.,  & Grignolio,  S.  (2019) Assessing precision and requirements of three methods to estimate roe deer density. PLoS ONE,  14 (10),  e0222349. https: // doi.org/10.1371/journal.pone.0222349

Montagna,  W.,  & Noback,  C. R.  (1947). Histochemical observations on the sebaceous glands of the rat. American Journal of Anatomy,  81,  39−61. doi: 10.1002/aja.1000810103

Nyambayar,  B.,  Mix,  H.,  & Tsytsulina,  K.  (2015). Moschus moschiferus. The IUCN Red List of Threatened Species 2015:  e.T13897A61977573. http: //dx.doi.org/10.2305/IUCN.UK.2015-2.RLTS.T13897A61977573.en. Downloaded on 07 January 2020.

Pavlinov,  I. Ya.,  & Khlyap,  L. A.  (2012). Order Artiodactyla. Pavlinov,  I. Ya.,  & Lissovsky,  A. A.  (Eds.). The mammals of the Russia:  A taxonomic and Geographic Reference  (Archive of the Zoological Museum of MSU. Vol. 52). KMK Sci Press,  Moscow,  429–473.

Pears,  A. G. E.  (1960). Histochemistry:  Theoretical and Applied. 2nd ed. J. and A. Churchill Ltd.,  London.

Price,  S. A.,  & Gittleman,  J. L.  (2007). Hunting to extinction:  biology and regional economy influence extinction risk and the impact of hunting in artiodactyls. Proceedings of the Royal Society B:  Biological Sciences,  274 (1620),  1845–1851. http: //doi.org/10.1098/rspb.2007.0505

Prikhod’ko,  V. I.  (2003). Kabarga:  proiskhozhdenie,  sistematika,  ekologiya,  povedenie i kommunikatsiya [Musk Deer:  Origin,  Taxonomy,  Ecology,  Behavior,  and Communication]. GEOS,  Moscow.  (in Russian).

Quay,  W. B.  (1986). Scent Glands. In:  Bereiter-Hahn,  J.,  Matoltsy,  A. G.,  & Richards,  K. S.  (eds) Biology of the Integument. Springer,  Berlin,  Heidelberg,  357−373. https: //doi.org/10.1007/978-3-662-00989-5_20

Rozhkov,  N. N.  (2018). Kvalimetriya i upravlenie kachestvom. Matematicheskie metody i modeli [Qualimetry and quality management. Mathematical methods and models]. Yurayt Publishing House,  Moscow.  (in Russian).

Saga,  K.  (2001). Histochemical and immunohistochemical markers for human eccrine and apocrine sweat glands:  an aid for histopathologic differentiation of sweat gland tumors. Journal of Investigative Dermatology Symposium Proceedings,  6 (1),  49–53. https: //doi.org/10.1046/j.0022-202x.2001.00005.x

Saga,  K.  (2002). Structure and function of human sweat glands studied with histochemistry and cytochemistry. Progress in Histochemistry and Cytochemistry,  37 (4),  323–386. DOI:  10.1016/s0079-6336 (02)80005-5

Saga,  K.,  & Morimoto,  Y.  (1995). Ultrastructural localization of alkaline phosphatase activity in human eccrine and apocrine sweat glands. Journal of Histochemistry and Cytochemistry,  43 (9),  927–932. https: //doi.org/10.1177/43.9.7642965

SiberianMuskDeer−Moschusmoschiferus (2012). Available at: https: //web.archive.org/web/20121207003130/http: //www.lhnet.org/siberian-musk-deer/ Accessed on 15 March 2020.

Slaght,  J. C.,  Milakovsky,  B.,  Maksimova,  D. A.,  Seryodkin,  I. V.,  Zaitsev,  V. A.,  Panichev,  A. M.,  & Miquelle,  D. G.  (2019). Anthropogenic influences on the distribution of a Vulnerable coniferous forest specialist:  habitat selection by the Siberian musk deer Moschus moschiferus. Oryx,  53 (1),  174–180. doi: 10.1017/s0030605316001617

Sokolov,  V.  (1982). Mammal Skin. Berkeley:  University of California Press.

Sokolov,  V. E.,  & Chernova,  O. F.  (2001). Kozhnye zhelezy mlekopitayushchikh [Cutaneous Glands of Mammals]. GEOS,  Moscow.  (in Russian).

Sokolov,  V. E.,  & Petrishchev,  B. I.  (1997). Kozhnyi pokrov domashnikh mlekopitayushchikh  (kopytnykh) [The Skin of Domestic Ungulates]. Inst. Probl. Ekol. Evol.,  Ross. Akad. Nauk,   Moscow.  (in Russian).

Sokolov,  V. E.,  Kagan,  M. Z.,  Vasilieva,  V. S.,  Prihodko,  V. I.,  & Zinkevich,  E. P.  (1987). Musk deer  (Moschus moschiferus):  Reinvestigation of main lipid components from preputial gland secretion. Journal of Chemical Ecology,  13,  71−83. https: //doi.org/10.1007/BF01020352

Sokolov,  V. E.,  Skurat,  L. N.,  Stepanova,  L. V.,  Sumina,  E. B.,  & Shabadash,  S. A.  (1988). Rukovodstvo po izucheniyu kozhnogo pokrova mlekopitayushchih [Guide for Analysis of Skin of Mammals]. Nauka,  Moscow.  (in Russian).

Spiers,  C. H.  (1973). Deer skin leathers and their use for costume. Costume,  7 (1),  14–23. DOI:  10.1179/cos.1973.7.1.14

Taylor,  N. A. S.  (1986). Eccrine Sweat Glands. Sports Medicine,  3,  387–397. https: //doi.org/10.2165/00007256-198603060-00001

Tuzuner,  N. N.,  & Bennett,  J. M.  (2018). Classification of the Acute Leukemias:  Cytochemical and Morphologic Considerations. In:  Wiernik,  P.,  Dutcher,  J.,  & Gertz,  M.  (eds). Neoplastic Diseases of the Blood. Springer,  Cham,  197−236 https: //doi.org/10.1007/978-3-319-64263-5_14

Vaughan,  A.  (2019). Ban on saiga trade? New Scientist,  243 (3244),  12. doi: 10.1016/s0262-4079 (19)31559-3

Wang,  W.,  Zhou,  R.,  He,  L.,  Liu,  S.,  Zhou,  J.,  Qi,  L.,  Li,  L.,  & Hu,  D.  (2015). The progress in nutrition research of musk deer:  Implication for conservation. Applied Animal Behaviour Science,  172,  1–8. doi:  10.1016/j.applanim.2015.09.006

Weiner,  J.  (1973). Dressing percentage,  gross body composition and caloric value of the roe-deer. Acta theriologica,  18 (11),  209−222.

Yi,  L.,  Dalai,  M.,  Su,  R.,  Lin,  W.,  Erdenedalai,  M.,  Luvsantseren,  B.,  Chimedtseren,  C.,  Wang,  Z.,  & Hasi,  S.  (2020). Whole-genome sequencing of wild Siberian musk deer  (Moschus moschiferus) provides insights into its genetic features. BMC Genomics,  21,  108. https: //doi.org/10.1186/s12864-020-6495-2

Share this article