Effect of reserviour temperature and oxygen conditions on the activity of Na-K pump in embrios and larvae of perch, roach, and ruffe


O. Vodianitskyi, O. Potrokhov, N. Hrynevych, O. Khomiak, Y. Khudiyash, N. Prysiazhniuk, O. Rud, A. Sliusarenko, L. Zagoruy, B. Gutyj, V. Dushka, V. Maxym, O. Dadak, V. Liublin

The Na + / K + –ATPase of cell membranes is one of the first to provide the formation of a primary response to the action of factors and initiates the mechanisms of formation of long-term adaptation. That is why the purpose of the study was to study the activity of Na-K pump in embryos and caviar of perch, roach, and ruffe under the action of different temperature and oxygen modes of the reservoir. The biological material of the studies was caviar, embryos and larvae of perch (Perca fluviatilis L.), roach (Rutilus rutilus L.) and ruffe (Gymnocephalus cernuus L.). Three reservoirs (ponds) were selected, which, due to their location and degree of shading, differed in temperature conditions and, consequently, in the oxygen regime.  The studies were conducted during April-May, at a time when perch, roach and ruffe spawning occur in natural water bodies. The maximum activity of the enzyme at the pre-cell stage was observed at a temperature of 16.3°C and amounted to 4.67 μmol Pi mg protein-1 h-1, and when it reached an ambient temperature of 18.1°C it decreased by 46.4% compared to the maximum. With the increase in the temperature of the aqueous medium above the norm decreased the activity of Na-K pump, which is due to the weakening of redox and increased anaerobic processes at low oxygen content in water. The activity of Na-K pump for perch embryos clearly shows that the most favorable temperatures for embryonic development are its lower values, in particular for the stage of eye pigmentation it is 14.9°C. After hatching at the pre-stage stage, maximum enzyme activity was observed at 16.3°C. For embryonic development of ruffe in the middle of the shell, the optimum water temperature is 15–16°C, but already at the stage of pre-cellulose, its optimum increased significantly, reaching 19–20.9°C. Roach is a more thermophilic species compared to perch and prefers higher water temperatures during embryonic development. It was noted that the activity of ATPase increased significantly with increasing water temperature. This may indicate a high adaptation of the roach to the temperature of the reservoirs, both under climatic norms and somewhat exceeding this norm. The best temperature for embryonic development of the roach is 16–17°C, and during pre-embryonic stage its optimum increased to 20–21°C.

Keywords: Temperature and oxygen regime of the reservoir; Perch; Roach; Ruffe; Embryos

Asatiani, V.S. (1965). Novye metody biohimicheskoj fotometrii. Moscow: Nauka (in Russian).

Awenius, C., Hankeln, T., & Burmester, T. (2001). Neuroglobins from the zebrafish Danio rerio and the pufferfish Tetraodon nigroviridis. Bichem. Biophys. Res. Commun., 287, 418–421. doi: 10.1006/bbrc.2001.5614

Blanco, G., & Mercer, R.W. (1998). Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol Renal Physiol., 275(5), F633–F650, doi: 10.1152/ajprenal.1998.275.5.F633.

Boyko, O.O., & Brygadyrenko, V.V. (2019). Nematocidial activity of aqueous solutions of plants of the families Cupressaceae, Rosaceae, Asteraceae, Fabaceae, Cannabaceae and Apiaceae. Biosystems Diversity, 27(3), 227–232. doi: 10.15421/011931

Dahlhoff, E.P. (2004). Biochemical indicators of stress and metabolism: applications for marine ecological studies. Annu. Rev. Physiol., 66, 183–207. doi: 10.1146/annurev.physiol.66.032102.114509

Fiedler, B., & Scheiner-Bobis, G. (1996). Transmembrane Topology of α and β Subunits of Na+, K+-ATPase Derived from β-Galactosidase Fusion Proteins Expressed in Yeast. J. Biol. Chem.,  271, 29312–29320. doi: 10.1074/jbc.271.46.29312

Gracey, A.Y., Troll, J.V., & Somero, G.N. (2001). Hypoxia-induced gene expression profiling in the euryoxic fish Gillichthys mirabilis. Proc. Natl. Acad. Sci. USA., 98, 1993–1998. doi: 10.1073/pnas.98.4.1993.

Grynevych, N., Sliusarenko, A., Dyman, T., Sliusarenko, S., Gutyj, B., Kukhtyn, M., Hunchak, V. & Kushnir, V. (2018). Etiology and histopathological alterations in some body organs of juvenile rainbow trout Oncorhynchus mykiss (Walbaum, 1792) at nitrite poisoning. Ukrainian Journal of Ecology, 8(1), 402–408. doi: 10.15421/2018_228

Jezek, P., & Hlavata, L. (2005). Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int. J. Biochem. Cell Biol., 37, 2478–2503. doi: 10.1016/j.biocel.2005.05.013

Kondrashova, M.N., Lesogorova, M.N., & Shnol', S.Je. (1965). Metod opredelenija neorganіchnogo fosfora po spektram pogloshhenija v ul'trafiolete. Biohimija, 30(3), 567–572 (in Russian).

Poulsen, H., Khandelia, H., Morth, J.P., Bublitz, M., Mouritsen, O.G., Egebjerg, J., & Nissen, P. (2010). Neurological disease mutations compromise a C-terminal ion pathway in the Na+/K+-ATPase. Nature, 467, 99–102. doi: 10.1038/nature09309

Roesner, A., Hankeln, T., & Burmester, T. (2006). Hypoxia induces a complex response of globin expression in zebrafish (Danio rerio). J Exp Biol., 209(11), 2129–2137. doi: 10.1242/jeb.02243

Roesner, A., Hankeln, T., & Burmester, T. (2006). Hypoxia induces a complex response of globin expression in zebrafish (Danio rerio). The Journal of Experimental Biology. Published by The Company of Biologists, 209, 2129–2137. doi: 10.1242/jeb.02243

Romanenko, V.D. (2006). Metody hidroekolohichnykh doslidzhen poverkhnevykh vod. K., 248–251 (in Ukrainian).

Rudenko, O. P., Paranjak, R. P., Kovalchuk, N. A., Kit, L. P., Hradovych, N. I., Gutyj, B. V., Kalyn, B. M., Sukhorska, O. P., Butsiak, A. A., Kropyvka, S. I., Petruniv, V. V., & Kovalska, L. M. (2019).  Influence of seasonal factors on carp fish immune reactivity. Ukrainian Journal of Ecology, 2019, 9(3), 168–173. doi: 10.15421/2019_726

Souza, M.M., Gross, S., Boyle, R.T. et al. (2000). Na+ / K+-ATPase inhibition during cardiac myocyte swelling: involvement of intracellular pH and Ca2+. Mol. Cell Biochem., 210(1-2), 173–183 doi: 10.1023/a:1007154412805

Staudinger, M.D., Mills, K.E., Stamieszkin, K., Record, N.R., Hudak, C.A., Allyn, A., Diamond, A., Friedland, K.D., Golet, W., Henderson, M.E., Hernandez, C.M., Huntington, T.G., Ji Rubao, Johnson, C.L., Johnson, D.S., Jordaan, A., Kocik, J., Li, Y., Liebman, M., Nichols, O.C., Pendleton, D., Richards, A., Robben, T., Thomas, A.C., Walsh, H.J., & Yakola, K. (2019). It’s about time: A synthesis of changing phenology in the Gulf of Maine ecosystem. Fisheries Oceanography, 28(5), 532–566. doi: 10.1111/fog.12429

Therien, A.G., & Blostein, R. (2000). Mechanisms of sodium pump regulation. Am. J. Physiol. Cell Physiol., 279, 541–566 doi: 10.1152/ajpcell.2000.279.3.C541

van der Meer, D.L., van den Thillart, G.E., Witte, F., de Bakker, M.A., Besser, J., Richardson, M.K., Spaink, H.P., Leito, J.T., & Bagowski, C.P. (2005). Gene expression profiling of the long-term adaptive response to hypoxia in the gills of adult zebrafish. Am. J. Physiol., 289(5), 1512–1519 doi: 10.1152/ajpregu.00089.2005

Vodianitskiy, O.M., Potrokhov, O.S., & Zinkovskiy, O.G. (2017). Embryonic and Early Postembryonic Development of Carp and Activity of Enzymes of the Energy and Plastic Metabolism under Impact of Water Temperature Fluctuations. Hydrob. J., 53(1), 78–86. doi: 10.1615/HydrobJ.v53.i1.80

Vodianitskyi, O.M., Potrokhov, O.S., Zinkovskyi, O.H., & Prychepa, M.V. (2017). Zmina aktyvnosti Na+/K+-ATFazy v embrionakh koropovykh ryb za dii riznoho temperaturnoho ta kysnevoho rezhymu vodoim. Visnyk Lvivskoho universytetu. Seriia biolohichna, 75, 14–22. (in Ukrainian) doi: 10.30970/vlubs.2017.75.02

Vodianitskyi, O.M., Potrokhov, O.S., Zinkovskyi, O.H., & Prychepa, M.V. (2017). Zmina aktyvnosti Na+/K+-ATFazy v embrionakh koropovykh ryb za dii riznoho temperaturnoho ta kysnevoho rezhymu vodoim. Visnyk Lvivskoho universytetu. Seriia biolohichna, 75, 14–22. doi: 10.30970/vlubs.2017.75.02

Woo, A.L., James, P.F., & Lingrel, J.B. (2000). Sperm motility is dependent on a unique isoform of the Na, K-ATPase. J. Biol. Chem., 275(27), 20693–20699. doi: 10.1074/jbc.M002323200

Woodward, G., Perkins, D.M., & Brown, L.E. (2010). Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos Trans R Soc Lond B Biol Sci., 365(1549), 2093–2106. doi: 10.1098/rstb.2010.0055

Share this article