Effect of treptolem on morphogenesis and productivity of linseed plants

Abstract

O.O. Khodanitska, V.G. Kuryata, O.A. Shevchuk, O.O. Tkachuk, I.V. Poprotska

It has been established the effect of growth stimulator with auxin, gibberellin, cytokinin compounds complex on the features of growth processes, anatomical organization of vegetative organs, productivity of linseed oil plants (Linum usitatissimum L.) and energy efficiency under application of growth regulator. Application of treptolem during the budding period leads to increase in the productivity of linseed oil by the increasing of morphogenesis process of vegetative organs with simultaneous restructuring of anatomical structure of shoots and leaves. The increase in stem diameter due to better development of bark, xylem, thickening of bast fibres enhances the resistance of linseed oil plants to lodging. Stimulator induces enhanced development of the photosynthetic apparatus: formation of a larger number of leaves, prolongation of their active functioning, increasing of chlorenchyma cells size and improving of chloroplastogenesis. The enhancement of photosynthetic productivity of linseed oil plants leads to an intensification of carpogenesis, an increase in yield and an improvement in the crop structure. Treptolem treatment increased the oil content in flax seeds and its unsaturation. The content of residual amount of morphoregulators in seeds is significantly lower than the permissible concentration. Improving of linseed productivity under treptolem as a stimulator of plant development is accompanied by changes in the amount of obtained crop energy, the structure of energy intensity and an increase in the energy efficiency ratio.

Keywords: Linum usitatissimum L.; growth stimulators; morphogenesis; productivity

References:
AOAC (2010). Official Methods of Analysis of Association of Analytical Chemist International 18 th ed. Rev. 3. 2010. Asso of Analytical Chemist. Gaithersburg, Maryland, USA.
Baud, S., & Lepiniec, L. (2010). Physiological and developmental regulation of seed oil production. Progress in Lipid Research, 49(3), 235-249. doi:/10.1016/j.plipres.2010.01.001
Cai, T., Xu, H., Peng, D., Yin, Y., Yang, W., Ni, Y., Chen, X., Xu, C., Yang, D., Cui, Z., & Wang, Z. (2014). Exogenous hormonal application improves grain yield of wheat by optimizing tiller productivity. F Crop Res, 155, 172–183. doi:10.1016/j.fcr.2013.09.008
Ciura, J., & Kruk, J. (2018). Phytohormones as targets for improving plant productivity and stress tolerance. Journal of Plant Physiology, 229, 32-40. doi: /10.1016/j.jplph.2018.06.013
Donato, P., Dugo, P., & Mondello, L. (2017). Separation of lipids. In Liquid Chromatography (2nd Edn), pp: 201-243. doi:/10.1016/B978-0-12-805392-8.00008-6
Fang, S., Gao, K., Hu, W., Wang, S., Chen, B., & Zhou, Z. (2019). Foliar and seed application of plant growth regulators affects cotton yield by altering leaf physiology and floral bud carbohydrate accumulation. Field Crops Research, 231, 105-114. doi: /10.1016/j.fcr.2018.11.012
Giannakoula, A. E., Ilias I. F., Maksimović, J. J., Maksimović, V. M., & Živanović B. D. (2012). The effects of plant growth regulators on growth, yield, and phenolic profile of lentil plants. Journal of Food Composition and Analysis, 28(1), 46-53. doi: /10.1016/j.jfca.2012.06.005
Hedden, P., & Thomas, S. G. (2016). The Gibberellins. John Wiley & Sons. doi:10.1002/9781119210436
Horwitz, W., Chichilo, P., & Reynolds, H. (1970). Official methods of analysis of the Association of Official Analytical Chemists. Official methods of analysis of the Association of Official Analytical Chemists.
Kendall, S. L., Storer, P. M. (2017). Berry Measuring canopy size and nitrogen content in oilseed rape for variable plant growth regulator and nitrogen fertiliser application. Advances in Animal Biosciences, 8, 299-302. doi: 10.1017/S2040470017000875
Khan, M. N., & Mohammad, F. (2013). Interactive Effect of GA3, N and P ameliorate growth, seed and fibre yield by enhancing photosynthetic capacity and carbonic anhydrase activity of linseed: a dual purpose crop. Journal of Integrative Agriculture, 12(7), 1183-1194. doi:/10.1016/S2095-3119(13)60443-8
Khodanitska, O. O., & Kuryata, V. G. (2018). Vlyianye khlormekvatkhloryda na formyrovanye fotosyntetycheskoho aparata y produktyvnost rastenyi lna. ScienceRise: Biological Science, 6(15), 18-23. doi:/10.15587/2519-8025.2018.153463 (in Russian).
Kuryata,V. G., Poprotska, I. V., & Rogach, Т. І. (2017). The impact of growth stimulators and retardants on the utilization of reserve lipids by sunflower seedlings. Regul Mech Biosyst, 8(3), 317-322. doi: 10.15421/021750
Kuryata, V. G., & Polyvanyi, S. V. (2018). Formation and functioning of source-sink relation system of oil poppy plants under treptolem treatment in connection with productivity of crop. Ukrainian Journal of Ecology, 8(1), 11-20. DOI: http://dx.doi.org/10.15421/2018_182
Kuryata, V. G., & Khodanitska, O. O. (2018). Features of anatomical structure, formation and functioning of leaf apparatus and productivity of linseed under chlormequatchloride treatment. Ukrainian Journal of Ecology, 8(1), 918-926. doi: 10.15421/2018_294
Kuryata, V. G., & Khodanitska, O. O. (2012). Peculiarities of morphogenesis and production process of the oil flax plants under the effect of hormonal complex modifiers . Physiology and biochemistry of cultural plants, 44(6), 522-528 (in Ukrainian).
Kuryata V. G., Polyvanyi S. V., Shevchuk O. A., & Tkachuk O. O. (2019). Morphogenesis and the effectiveness of the production process of oil poppy under the complex action of retardant chlormequat chloride and growth stimulant treptolem. UkrainianJournal of Ecology, 9(1), 127-134.
Macedo, W. R., Araujo, D. K., Santos, V. M., Camargo, G. M., & Castroand, P. R. (2017). Plant growth regulators on sweet sorghum: physiological and nutritional value analysis. Comunicata Scientiae, 8(1), 170–175. DOI: 10.14295/CS.v8i1.1315
Mao, L., Zhang, L., Sun, X., der Werf, W., Evers, J. B., Zhao, X., Zhan, S., Song, X., & Li, Z. (2018). Use of the beta growth function to quantitatively characterize the effects of plant density and a growth regulator on growth and biomass partitioning in cotton. Field Crops Research, 224, 28-36. doi: /10.1016/j.fcr.2018.04.017
McKenzie, R. R., & Deyholos, M. K. (2011). Effects of plant growth regulator treatments on stem vascular tissue development in linseed (Linum usitatissimum L.). Industrial Crops and Products, 34(1), 1119-1127. doi:/10.1016/j.indcrop.2011.03.028
Mo, Z. W., Pan S. G., Kanu, A. S., Li, W., Duan, M. Y., Tang, X. R. (2016). Exogenous application of plant growth regulators induce chilling tolerance in direct seeded super and non–super rice seedlings through modulations in morpho–physiological attributes. Cereal Research Communications, 44(3), 524–534. doi: 10.1556/0806.44.2016.010
Mohammad, N. K., & Mohammad, F. (2013). Effect of GA3 , N and P ameliorate growth, seed and fibre yield by enhancing photosynthetic capacity and carbonic anhydrase activity of linseed. Integrative Agriculture, 12(7), 1183–1194. doi:10.1016/S2095–3119(13)60443–8
Pérez-Jiménez, M., Pazos-Navarro, M., López-Marín, J., Gálvez, A., Varó, P., & delAmor F. M. (2015). Foliar application of plant growth regulators changes the nutrient composition of sweet pepper (Capsicum annuum L.). Scientia Horticulturae, 194, 188-193. doi: /10.1016/j.scienta.2015.08.002
Renuka, N., Guldhe, A., Singh,P., & Bux, F. (2018). Combined effect of exogenous phytohormones on biomass and lipid production in Acutodesmus obliquus under nitrogen limitation. Energy Conversion and Management, 168, 522-528. doi: /10.1016/j.enconman.2018.05.029
Rogach, V. V., Rogach, T. I. (2015). Influence of synthetic growth stimulators on morphological and physiological characteristicsand biological productivity of potato culture. Vìsn Dnìpropetr Unìv Ser Bìol Ekol, 23(2), 221-224 (in Ukrainian). doi:10.15421/011532
Sang-Kuk, K., Chae-Min, H., Jong-Hee, S., & Tae-Young, K. (2018). Effects of paclobutrazol and prohexadione-ca on seed yield, and content of oils and gibberellin in flax grown in a greenhouse. Korean J Crop Sci, 63(3), 265-271. doi: 10.7740/kjcs.2018.63.3.265
Sang-Kuk, K., & Hak-Yoon, K. (2014). Effects of gibberellin biosynthetic inhibitors on oil, secoisolaresonolodiglucoside, seed yield and endogenous gibberellin content in flax. Korean J Plant Res, 27(3), 229-235. doi: 10.7732/kjpr.2014.27.3.229
Shevchuk, O. A., Tkachuk, O. O., Khodanitska, O. O., & Vergelis V. I. (2018). Obsiah zastosuvannia ta ekolohichna otsinka khimichnykh zasobiv zakhystu roslyn. Naukovi zapysky vinnytskoho derzhavnoho pedahohichnoho universytetu imeni Mykhaila Kotsiubynskoho. Seriia: Heohrafiia, 30 (3-4), 119-128 (in Ukrainian).
Shevchuk, O. A., Tkachuk, O. O., Kuryata, V. G., Khodanitska, O. O., & Polyvanyi, S. V. (2019). Features of leaf photosynthetic apparatus of sugar beet under retardants treatment. Ukrainian Journal of Ecology, 9(1), 115-120.
Upreti, K. K., & Sharma, M. (2016). Role of plant growth regulators in abiotic stress tolerance. In: Abiotic stress physiology of horticultural crops. Springer, New Delhi, pp: 19-46. doi: 10.1007/978-81-322-2725-0_2
Wani, S. H., Kumar, V., Shriram, V., & Sah, S. K. (2016). Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. The Crop Journal, 4(3), 162-176. doi: /10.1016/j.cj.2016.01.010
Yu, S. M., Lo, S. F., & Ho, T. H. D. (2015). Source–sink communication: regulated by hormone, nutrient, and stress crosssignaling. Trends in Plant Science, 20(12), 844-857. doi: 10.1016/j.tplants.2015.10.009
 

Share this article