Enhanced cultivation technology for lacto- and bifidobacteria

Abstract

A.P. Paliy, S.A. Gujvinska, K.O. Rodionova, N.V. Alekseeva, O.V. Ponomarenko, M.S. Alrawashdeh, T.A. Yeletskaya, G.V. Ponomarenko, V.Yu. Kushnir, A.P. Palii

The aim of this work was to improve a cultivation technology of lactobacteria and bifidobacteria based on the optimal growth substrate, which ensures a preservation of basic biological properties of microorganisms. Seven variants of experimental nutrient media were prepared for cultivation of lactic acid bacteria. The growth properties of experimental nutrient media were studied using following strains: Lactobacillus plantarum 7, L. casei 27, L. plantarum 7-317, Bifidobacterium adolescentis 17 and B. adolescentis 17-316. The number of living microbial cells was determined by serial dilution methods. The composition of nutrient media for cultivation of lactobacteria, bifidobacteria and technological parameters of their cultivation were determined by the temperature of 37 ± 0.5°?. Acidity of a nutrient medium has pH value ranges from 6.5 to 7.5. A nutrient medium for cultivation of lactobacteria is proposed. Composition of new nutrient medium: lactose – 10.0-15.0%, sucrose – 5.0-10.0%, cystine – 0.01%, skim milk – up to 100.0%. It was established that the optimal nutrient medium for bifidobacteria accumulation composed of the following components (ratio of components, mass %): peptone – 7.0 ± 0.01, yeast autolysate – 4.0 ± 0.01, glucose – 1,5 ± 0.02, sucrose – 1.5 ± 0.01, cystine – 0.03 ± 0.01, ammonium citrate – 0.4 ± 0.03, potassium phosphate monosubstituted – 0.4 ± 0.02, MgSO4 – 0.04 ± 0.002, MnSO4 – 0.007 ± 0.002, sodium phosphate disubstituted – 0.4 ± 0.02, microbiological agar – 2.5 ± 0.04, sodium citrate – 0.8 ± 0.05, distilled water – up to 100%.

Key words: Cultivation technology; Animals; Biological studies
 

References

Alayande, K. A., Aiyegoro, O. A., & Ateba, C. N. (2020). Probiotics in Animal Husbandry: Applicability and Associated Risk Factors. Sustainability, 12, 1087. doi: 10.3390/su12031087

Ben Salah, R., Trabelsi, I., Ben Mansour, R., Lassoued, S., Chouayekh, H., & Bejar, S. (2012). A new Lactobacillus plantarum strain, TN8, from the gastro intestinal tract of poultry induces high cytokine production. Anaerobe, 18 (4), 436-444. doi: 10.1016/j.anaerobe.2012.05.001

Bermudez-Brito, M., Plaza-Díaz, J., Muñoz-Quezada, S., Gómez-Llorente, C., & Gil, A. (2012). Probiotic Mechanisms of Action. Annals of Nutrition and Metabolism, 61, 160-174. doi: 10.1159/000342079

Celiberto, L. S., Bedani, R., Rossi, E. A., & Cavallini, D. C. U. (2017). Probiotics: The scienti?c evidence in the context of in??ammatory bowel disease. Critical reviews in food science and nutrition, 57(9), 1759-1768. doi: 10.1080/10408398.2014.941457

Chaucheyras-Durand, F., & Durand, H. (2010). Probiotics in animal nutrition and health. Beneficial microbes, 1(1), 3-9. doi: 10.3920/BM2008.1002

Chiang, M. L., Chen, H. C., Chen, K. N., Lin, Y. C., Lin, Y. T., & Chen, M.-J. (2015). Optimizing production of two potential probiotic lactobacilli strains isolated from piglet feces as feed additives for weaned piglets. Asian-Australasian journal of animal sciences, 28(8), 1163-1170. doi: 10.5713/ajas.14.0780

Chiu, Y. H., Lin, S. L., Tsai, J. J., & Lin, M. Y. (2014). Probiotic actions on diseases: implications for therapeutic treatments. Food and function, 5(4), 625-634. doi: 10.1039/c3fo60600g

Colombo, M., de Oliveira, Z. A. E., de Carvalho, F. A., & Nero, L. A. (2014). Development of an alternative culture medium for the selective enumeration of Lactobacillus casei in fermented milk. Food Microbiology, 39, 89-95. doi: 10.1016/j.fm.2013.11.008

Gadde, U., Kim, W. H., Oh, S. T., & Lillehoj, H. S. (2017). Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: A review. Animal health research reviews, 18(1), 26-45. doi: 10.1017/S1466252316000207

Gujvinska, S. ?., & Paliy, A. P. (2018a). Determination of antagonistic and adhesive properties of lactobacterium and bifidobacterium. Mikrobiolohichnyi Zhurnal, 80(1), 36-44. doi: 10.15407/microbiolj80.01.036

Gujvinska, S. A., & Paliy, A. P. (2018b). Biological properties of lactobacilli and bifidobacteria. Veterinary biotechnology. Bulletin, 32(1), 91-97. (In Ukrainian)

Gujvinska, S. ?., Paliy, A. P., Dunaeva, O. V., Paliy, A. P., & Berezhna, N. V. (2018). Biotechnology production of medium for cultivation and lyophilization of lactic acid bacteria. Ukrainian Journal of Ecology, 8(2), 5-11. doi: 10.15421/2018_302

Hadzevych, O. V., Paliy, A. P., Kinash, O. V., Petrov, R. V., & Paliy, A. P. (2019). Antibiotic resistance of microorganisms isolated from milk. World of Medicine and Biology, 3(69), 245-250. doi: 10.26724/2079-8334-2019-3-69-245-250

Hayek, S. A., Gyawali, R., Aljaloud, S. O., Krastanov, A., & Ibrahim, S. A. (2019). Cultivation media for lactic acid bacteria used in dairy products. Journal of Dairy Research, 86(4), 490-502. doi: 10.1017/S002202991900075X

Herawati, V. E., Pinandoyo, P., Rismaningsih, N., Darmanto, D., Hutabarat, J., & Radjasa, O. K. (2020). The effect of probiotic bacteria in culture media using organic fertilizer for population density, biomass production and nutrient quality of Phronima sp. as natural feed. Aquaculture Research, 51(2), 836-843. doi: 10.1111/are.14433

Hossain, M. I., Sadekuzzaman, M., & Ha, S. D. (2017). Probiotics as potential alternative biocontrol agents in the agriculture and food industries: A review. Food research international, 100(1), 63-73. doi: 10.1016/j.foodres.2017.07.077

Irkitova, A.N., Matsyura, A.V. (2017). Ecological and biological characteristics of Lactobacillus acidophilus. Ukrainian Journal of Ecology, 7(4), 214–230.

Irkitova A.N., Grebenshchikova A.V., Matsyura A.V (2018). Antagonistic activity of Bacillus subtilis strains isolated from various sources. Ukrainian Journal of Ecology, 8(2), 354-364 doi: 10.15421/2018_354.

Kneifel, W. (2000). In vitro growth behaviour of probiotic bacteria in culture media with carbohydrates of prebiotic importance. Microbial Ecology in Health and Disease, 12:1, 27-34, doi: 10.1080/089106000435563

Markowiak, P., & ??li?ewska, K. (2018). The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathogens, 10:21. doi: 10.1186/s13099-018-0250-0

Nwamaioha, N. O., & Ibrahim, S. A. (2018). A selective medium for the enumeration and differentiation of Lactobacillus delbrueckii ssp. Bulgaricus. Journal of Dairy Science, 101, 4953-4961. doi: 10.3168/jds.2017-14155

Odegov, N.I., Dorofeev, R.V., Irkitova, A.N., Funk, I.A., Orlova, T.N., Matsyura, A.V. (2017). Diversity of phage associations homologous to lactic acid bacteria. Ukrainian Journal of Ecology, 7(4), 197–206.

Ozen, M., & Dinleyici, E. C. (2015). The history of probiotics: the untold story. Beneficial microbes, 6(2), 159-165. doi: 10.3920/BM2014.0103

Paliy, A. P., Gujvinska, S. A., Livoshchenko, L. P., Nalivayko, L. I., Livoshchenko, Ye. M., Risovaniy, V. I., Dubin, R. A., Berezhna, N. V., Palii, A. P., & Petrov, R. V. (2020). Specific composition of indigenous microflora (Lactobacillus spp., Bifidobacterium spp., Lactococcus spp.) in farm animals. Ukrainian Journal of Ecology, 10(1), 43-48. doi: 10.15421/2020_7

Parvez, S., Malik, K. A., Kang, S. Ah., & Kim, H.-Y. (2006). Probiotics and their fermented food products are beneficial for health. Journal of Applied Microbiology, 100(6), 1171-1185. doi: 10.1111/j.1365-2672.2006.02963.x

Patel, R. M., Myers, L. S., Kurundkar, A. R., Maheshwari, A., Nusrat, A., & Lin, P. W. (2012). Probiotic bacteria induce maturation of intestinal claudin 3 expression and barrier function. The American journal of pathology, 180 (2), 626-635. doi: 10.1016/j.ajpath.2011.10.025

Ram, C., & Chander, H. (2003). Optimization of culture conditions of probiotic bifidobacteria for maximal adhesion to hexadecane. World Journal of Microbiology and Biotechnology, 19, 407-410. doi: 10.1023/A:1023946702949

Roy, D. (2001). Media for the isolation and enumeration of bifidobacteria in dairy products. International journal of food microbiology, 69(3), 167-182. doi: 10.1016/s0168-1605(01)00496-2

Sánchez, Ó. J., Barragán, P. J., & Serna, L. (2019). Review of Lactobacillus in the food industry and their culture media. Revista Colombiana de Biotecnología, 21(2), 63-76. doi: 10.15446/rev.colomb.biote.v21n2.81576

Senz, M., Van, L., Bader, J., & Stahl, U. (2015). Control of cell morphology of probiotic Lactobacillus acidophilus for enhanced cell stability during industrial processing. International journal of Food Microbiology, 792, 34-42. doi: 10.1016/j.ijfoodmicro.2014.09.015

Süle, J., Kõrösi, T., Hucker, A., & Varga, L. (2014). Evaluation of culture media for selective enumeration of bifidobacteria and lactic acid bacteria. Brazilian journal of microbiology, 45(3), 1023???1030. doi: 10.1590/s1517-83822014000300035

Uzunova-Doneva, T., & Donev, T. (2005) ?nabiosis and conservation of microorganisms. Journal of culture collections, 4(1), 17-28.

Waddington, L., Cyr, T., Hefford, M., Hansen, L. T., & Kalmokoff, M. (2010). Understanding the acid tolerance response of bifidobacteria. Journal of Applied Microbiology, 108, 1408-1420. doi: 10.1111/j.1365-2672.2009.04540.x

Wang, B., Xu, H., Wei, H., Zeng, Z., & Xu, F. (2015). Oral administration of Bifidobacterium bifidum for modylating microflora, acid and bile resistance, and phylosiological indices in mice. Canadian journal of microbiology, 61(2), 155-163. doi: 10.1139/cjm-2014-0694

Yang, E., Fan, L., Yan, J., Jiang, Y., Doucette, C., Fillmore, S., & Walker, B. (2018). Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express, 8(1), 10. doi:10.1186/s13568-018-0536-0

Yirga, H. (2015) The Use of Probiotics in Animal Nutrition. Journal of Probiotics & Health, 3(2), 132. doi: 10.4172/2329-8901.1000132

Zhu, G., Ma, F., Wang, G., Wang, Y., Zhao, J., Zhang, H., & Chen, W. (2018). Bi?dobacteria attenuate the development of metabolic disorders, with inter-and intra-species differences. Food & Function, 9, 3509-3522. doi: 10.1039/c8fo00100f.

 

Share this article