Sea buckthorn: new promising varieties and using their berries for the manufacture of functional products

Abstract

T.Z. Moskalets, A.H. Vovkohon, N. P. Pelekhata, O.B. Ovezmyradova, V. M. Pelekhatyi

Sea buckthorn (Hippophae rhamnoides L.) is a unique and valuable crop. Its raw materials (fruits, leaves, seeds) due to therapeutic and consumer characteristics are demanding globally. In Ukraine, the H. rhamnoides industry has yet to be developed. However, with recent emerging interest and increasing plantings, sea buckthorn will play a significant part in the future nutraceutical market. The widespread use of raw materials of sea buckthorn is limited due to insufficient knowledge of its biochemical composition and, as a result, the lack of effective technologies for its processing. A comprehensive study of sea buckthorn varieties on morphological, biochemical, physicochemical properties will make it possible to use raw fruit by target appointment to produce high biological products. One of the most effective solutions to food problems of the person connected with a lack of vitamins is the development of new compoundings and technologies of juice and dessert production of functional orientation. The research objects were new promising sea buckthorn varieties (of Institute of Horticulture National Academy Agrarian Sciences of Ukraine breeding: 'Lvivyanka', 'Osinnia krasunia', 'Mukshanska', 'Rapsodiia', 'Medova osin') and their berries. In the study, microbiological, biometrical, population-species, biochemical, and physicochemical research methods were used. According to morphological features (presence of thorns, shape, size, and color of fruits), pedigree and biochemical properties, the ranking of sea buckthorn varieties by ecotypic and selection-genetical affiliation of habitats into ?arpathian, Carpathian ? Mongolian, Jutland ? Mongolian, Jutland ? Siberian ecotypes were carried out. Biochemical, physicochemical analysis of fruits of new varieties of sea buckthorn breeding of the Institute of Horticulture of National Academy Agrarian Sciences (Ukraine) was presented, and recipes and technological parameters of blended juices and biscuit cakes were developed as new products with high biological value. Sea buckthorn berries have powerful bioindustrial potential, which requires further detailed study and a broader use in the food industry.

Keywords: Hippophae rhamnoides L.; ecotype and selection genetic affiliation; breeding; quality, blended juices; dried pomace; sponge cake.
 

References

Arimboor, R., Kumar, K. S., & Arumughan, C. (2008). Simultaneous estimation of phenolic acids in sea buckthorn (Hippophaë rhamnoides) using RP-HPLC with DAD. Journal of Pharmaceutical & Biomedical Analysis, 47(1), 31–38. doi: 10.1016/j.jpba.2007.11.045

Attri, S., Sharma, K., Raigond, P., & Goel, G. (2018). Colonic fermentation of polyphenolics from sea buckthorn (Hippophae rhamnoides) berries: Assessment of effects on microbial diversity by principal component analysis. Food Research International, 105, 324–332. doi: 10.1016/j.foodres.2017.11.032.

Ben-Mahmoud, Z., Mohamed, M. S., Bláha, J., Lukešová, D., & Kunc, P. (2014). The effect of sea buckthorn (Hippophae rhamnoides L.) residues in the compound feeds on the performance and skin color of broilers. Indian Journal of Animal Research, 48(6), 548–555.

Christaki, E. (2012). Hippophae Rhamnoides L. (sea buckthorn): A potential source of nutraceuticals. Food & Public Health, 2(3), 69–72. doi: 10.5923 / j.fph.20120203.02

Cioroi, M., Chiriac, E. R., & Stefan, C. S. (2017). Determination of acidity, total polyphenol content, calcium, magnesium, and phosphorous in sea buckthorn berries. Revista de Chimie, 1(2), 2–5. https://doi.org/10.37358/RC.17.2.5440

Dulf, F. V. (2012). Fatty acids in berry lipids of six sea buckthorn (Hippophae rhamnoides L., subspecies carpatica) cultivars grown in Romania. Chemistry Central Journal, 6(1), 1–12. doi: 10.1186 / 1752-153X-6-106

Dumbrav?, D.., Moldovan, C., Raba, D.-N., Popa, M., & Drug?, M. (2016). Evaluation of antioxidant activity, polyphenols, and vitamin C content of some exotic fruits. Journal of Pharmacy & BioAllied Sciences, 22(1), 13–16.

Fatima, T., Snyder, C., Schroeder, W., Cram, D., Datla, R., Wishart, D., Weselake, R., & Krishna, P. (2012). Fatty acid composition of developing sea buckthorn (Hippophae rhamnoides L.) Berry & Transcriptome of the Mature Seed. PLoS ONE, 7, e34099. https://doi.org/10.1016/j.lwt.2015.10.061e.0034099

Gunenc, A., Khoury, C., Legault, C., Mirrashed, H., Rijke, J., & Hosseinian, F. (2016). Seabuckthorn as a novel prebiotic source improves probiotic viability in yogurt. LWT. Food Science and Technology, 66, 490–495. https://doi.org/10.1016/j.lwt.2015.10.061

Gur?ík, ?., Porhajaš, V., ?ervený, D. & Bajusová, Z. (2019). Economic evaluation of cultivation and finalization of the products from sea buckthorn. Visegrad Journal on Bioeconomy & Sustainable Development, 8(1), 27-30. https://doi.org/10.2478/vjbsd-2019-0005

Guo, R., Guo, X., Li, T., Fu, X., & Liu, R. H. (2017). Comparative assessment of phytochemical profiles, antioxidant, and antiproliferative activities of sea buckthorn (Hippophae rhamnoides L.) berries. Food Chemistry, 221, 997–1003. doi: 10.1016 / j.foodchem.2016.11.063

Gutzeit, D., Baleanu, G., Winterhalter, P., & Jerz, G. (2008). Vitamin C content in sea buckthorn berries (Hippopha rhamnoides L. ssp. rhamnoides) and related products: A kinetic study on storage stability and the determination of processing effects. Journal of Food Science, 73(9), 615–620. doi: 10.1111 / j.1750-3841.2008.00957.x

Ilhan, G., Gundogdu, M., Karlovi´C.K., ?idovec, V., Vokurka, A., Ercisli, S. (2021). Main Agro-Morphological and Biochemical Berry Characteristics of Wild-Grown Sea Buckthorn (Hippophae rhamnoides L. ssp. caucasica Rousi) Genotypes in Turkey. Sustainability, 13, 1198. https:// doi.org/10.3390/su13031198

Kallio, H., Yang, B., Peippo, P., Tahvonen, R., & Pan, R. (2002). Triacylglycerols, glycerophospholipids, tocopherols, and tocotrienols in the berries and seeds of the two subspecies (ssp. sinensis and mongolica) of sea buckthorn (Hippophaë rhamnoides). Journal of Agricultural and Food Chemistry, 50(10), 3004–3009. doi: 10.1021 / jf011556o

Kuhkheil, A., Badi, H.N., Mehrafarin, A., & Abdossi, V. (2017). Chemical constituents of sea buckthorn (Hippophae rhamnoides L.) fruit in populations of the central Alborz Mountains in Iran. Research Journal of Pharmacognosy, 4, 1–12.

Li, T.S.C., Beveridge, T.H.J., & Oomah, B.D. (2003). Nutritional and medicinal values. In Sea Buckthorn (Hippophae rhamnoides L.): Production and Utilization; Li, T.S.C., Beveridge, T., Eds.; NRC Research Press: Ottawa, ON, Canada, 101–108. doi: 10.1016/j.foodres.2011.03.002

Lindström, J.,  Sas, D., Lideskog, H., Löfstrand, M., Karlsson, L., & Defining G. (2015). 'Functional Products' through their constituents International. Journal of Product Development, 20 (1), 1-24.

Ma, X., Laaksonen, O., Zheng, J., Yang, W., Trépanier, M., Kallio, H., & Yang, B. (2016). Flavonol glycosides in berries of two major subspecies of sea buckthorn (Hippophaë rhamnoides L.) and influence of growth sites. Food Chemistry, 200, 189–198. doi: 10.1016 / j.foodchem.2016.01.036

Melgarejo, P., Salazar, D., & Artes, F. (2000) Organic acids and sugars composition of harvested pomegranate fruits. European Food Research and Technology, 211, 185–190. https://doi.org/10.1007/s002170050021

Mortensen, M., Spagner, C., Cuparencu, C., Astrup, A., Raben, A., & Dragsted, L. (2018). Sea buckthorn decreases and delays insulin response and improves glycaemic profile following a sucrose-containing berry meal: A randomised, controlled, crossover study of Danish sea buckthorn and strawberries in overweight and obese male subjects. European Journal of Nutrition, 57, 2827–2837. doi: 10.1007/s00394-017-1550-8

Moskalets, T., Moskalets, V., Vovkohon, A., Shevchuk, O., & Matviichuk, ?. (2019). Modern breeding and cultivation of unpopular fruits and berries in Ukraine. Ukrainian Journal of Ecology, 9(3), 204–213. doi: http://dx.doi.org/10.15421/2019082  

Papuc, C., Diaconescu, C., & Nicorescu, V. (2008). Antioxidant activity of sea buckthorn (Hippophae rhamnoides) extracts compared with common food additives. Romanian Biotechnological Letters, 13(6), 4049–4053.

Pop, R., Weesepoel, Y., Socaciu, C., Pintea, A., Vincken, J.-P., & Gruppen, H. (2014). Carotenoid composition of berries and leaves from six Romanian sea buckthorn (Hippophae rhamnoides L.) varieties. Food Chemistry, 147, 1–9. doi: 10.1016 / j.foodchem.2013.09.083

Rafalska, A., Abramowicz, K., & Krauze, M. (2017).  Sea buckthorn (Hippophae rhamnoides L.) as a plant for universal application. World Scientific News, 72, 123–140.

Sabir, S., Maqsood, H., Hayat, I., Khan, M., Khaliq, A. (2005). Elemental and nutritional analysis of sea buckthorn (Hippophae rhamnoides ssp. turkestanica) berries of Pakistani origin. Journal of Medicinal Food, 8, 518–522. doi: 10.1089 / jmf.2005.8.518.

Saeidi, K. Alirezalu, A. & Akbari, Z. (2016). Evaluation of chemical constitute, fatty acids and antioxidant activity of the fruit and seed of sea buckthorn (Hippophae rhamnoides L.) grown wild in Iran. Natural Product Research, 30, 366–368. doi: 10.1080/14786419.2015.1057728

Singh, V. (2003). Geographical adaptation and distribution of seabuckthorn. In Seabuckthorn (Hippophae L.). A Multipurpose Wonder Plant; Singh, V., Ed.; Indus Publishing Company: New Delhi, India, I, 21–34.

Stolzenbach, S., Bredie, W., & Byrne, D. (2013). Consumer concepts in new product development of local foods: Traditional versus novel honeys. Food Research International, 52(1), 144–152. doi: 10.1016 / j.foodres.2013.02.030

Sturza, R. A., Ghendov-Mosanu, A. A., Deseatnicov, O. I., & Suhodol, N. F. (2016). Use of sea buckthorn fruits in the pastry manufacturing. Pakistan Journal of Nutrition, 17(1), 35–43.

Terpou, A., Gialleli, A. I., Bosnea, L., Kanellaki, M., Koutinas, A., & Castro, G. (2017). Novel cheese production by incorporation of sea buckthorn berries (Hippophae rhamnoides L.) supported probiotic cells. LWT. Food Science & Technology, 79, 616–624.

Terpou, A., Papadaki, A., Bosnea, L., Kanellaki, M., & Kopsahelis, N. (2019). Novel frozen yogurt production fortified with sea buckthorn berries and probiotics. LWT. Food Science & Technology, 105, 242–249. doi: 10.1016/j.lwt.2019.02.024

Tiitinen, K. M., Yang, B., Haraldsson, G. G., Jonsdottir, S., & Kallio, H. P. (2006). Fast analysis of sugars, fruit acids, and vitamin C in sea buckthorn (Hippophae rhamnoides L.) varieties. Journal of Agricultural & Food Chemistry, 54(7), 2508–2513. doi: 10.1021/jf053177r

Ursache, F. M., Ghinea, I. O., Turturic?, M., Aprodu, I., Râpeanu, G., & St?nciuc, N. (2017). Phytochemicals content and antioxidant properties of sea buckthorn (Hippophae rhamnoides L.) as affected by heat treatment – Quantitative spectroscopic and kinetic approaches. Food Chemistry, 233, 442–449. doi: 10.1016/j.foodchem.2017.04.107

Vilas-Franquesa, A., Saldo, J. & Juan, B. (2020). Potential of sea buckthorn-based ingredients for the food and feed industry – a review. Food Production, Processing & Nutrition, 2, 17 https://doi.org/10.1186/s43014-020-00032-y

World Health Organization and Food and Agriculture Organization of the United Nations. (2004). Vitamin and mineral requirements in human nutrition. https://www.who.int/nutrition/publications/micronutrients/9241546123/en/ Accessed 10 Feb 2020.

Yao, Y., Tigerstedt, P., & Joy, P. (1992). Variation of vitamin C concentration and character correlation between and within natural sea buckthorn (Hippophae rhamnoides L.) populations. Acta Agriculturae Scandinavica Section B – Soil & Plant Science, 42, 12–17. https://doi.org/10.1080/09064719209410194

Zadernowski, R., Naczk, M., Czaplicki, S., Rubinskiene, M., & Sza?kiewicz, M. (2005). Composition of phenolic acids in sea buckthorn (Hippophae rhamnoides L.) berries. Journal of the American Oil Chemists’ Society, 82(3), 175–179. https://doi.org/10.1007/s11746-005-5169-1

Share this article